Aguiar and Amador

Take the Short Route How to repay and restructure sovereign debt with multiple maturities

Dirk Niepelt
Study Center Gerzensee; U of Bern; CEPR
June 2015

Introduction

Food for thought in a tractable model

- Repay short-term debt (first) when de-leveraging
- Thm 1: Short-term debt operations suffice
- Thm 2: Long-term operations may be counter productive

Standard and non-standard assumptions

- $\beta(1+r)=1$ (non-standard)
- No risk apart from risky default cost (not unusual)
- $\lambda \perp b$ in crisis region of interest (non-standard)
- Social losses of default (standard)

Discussion

- Slicing the results differently

1. De-leveraging is optimal under commitment to T
(Not only without commitment)
2. Lack of commitment to T is not binding when relying on short-term debt operations
(Not only on de-leveraging paths)

- Understand role of assumptions, differences to Niepelt (2014)

Life in the Crisis Zone

> u
> u

De-leveraging

A savings-cum-exit-time problem

- Perfect smoothing before and after T, "jump" at exit time
- Before: Flat consumption due to $\beta(1+r)=1$, discount factor $\beta(1-\lambda)$, Arrow security return $(1+r)(1-\lambda)^{-1}$
- After: Ditto, with $\lambda=0$
- "Jump" due to multiplier

$$
\max _{b_{S, T}} u\left(\ldots+b_{S, T}\right)+\beta u\left(\ldots-(1+r) b_{S, T}\right) \text { s.t. } \bar{B} \geq b_{L, 0}+b_{S, T}
$$

Why exit the crisis zone?

- Staying put costs $r+\lambda$ per unit of short-term debt per period
- The λ component reflects social losses

It compensates for risk of default when lenders receive zero although borrower bears cost

- Exiting the crisis zone and eliminating the λ component is worth it, unless finite T strongly undermines consumption smoothing
\Rightarrow Social losses are key

$$
\begin{aligned}
& T=1 \\
& W\left(b_{L, 0}, b_{S, 0}, T\right)=2.12662
\end{aligned}
$$

$$
\begin{aligned}
& T=1,2,3,4 \\
& W\left(b_{L, 0}, b_{S, 0}, T\right)=2.12662,2.99073,2.95469,2.89935
\end{aligned}
$$

$$
\begin{aligned}
& T=1,2,3,4,5 \\
& W\left(b_{L, 0}, b_{S, 0}, T\right)=2.12662,2.99073,2.95469,2.89935,2.85761
\end{aligned}
$$

Long- vs. short-term debt

- Servicing long-term debt costs just r per period
- Price effect due to default risk materializes at issuance
- With outstanding long-term debt, price effect is a bygone
\Rightarrow De-leveraging incentives only are present with short-term debt exposure
\Rightarrow More generally, initial debt composition affects de-leveraging incentives (return to this later)

Robustness of the de-leveraging result

- Additional, "intermediate" maturities don't make a difference

The shorter the duration, the larger the need for rollovers and thus, the default risk/social loss component that gets "re-priced" and induces de-leveraging

- Smaller β (standard assumption) does make a difference Extreme case: $\beta=0$ (top of debt-Laffer curve)
\Rightarrow The de-leveraging result is not general, but it is interesting precisely because it holds when $\beta(1+r)=1$

Time Consistency

Initial debt composition affects de-leveraging incentives
Standard sovereign debt model

- Debt affects default risk directly and indirectly, through subsequent rollover decisions
- Price effects reflect default risk/social losses
- They vary by maturity, inducing an optimal composition

This model

- Price effects only work through T (since $\lambda \perp b$) which is endogenous to debt composition

Consequences of lack of commitment
Standard sovereign debt model

- Fully aligning ex-ante and ex-post incentives is impossible

This model

- Alignment is possible

Only need to render choice of T time consistent
\Rightarrow Crucial $\lambda \perp b$ assumption

How to render choice of T time consistent?

- Ex-ante choice internalizes all future price effects
- Ex-post choice no longer internalizes bygones
- To guarantee consistency, "not-bygones" ex ante should remain "not-bygones" ex post
Fully relying on short-term debt operations achieves this Relevant default risk/social losses get "re-priced" in each period (at each rollover)
\Rightarrow Scant intuition in paper

Why are long-term debt operations counter productive?

- Swapping long- for short-term debt undermines alignment But it triggers appreciation of long-term debt Mutual gains could be realized-but not in the market, due to holdup
Cf. debt overhang literature
\Rightarrow Social losses are key
- Swapping short- for long-term debt undermines alignment It also dilutes long-term debt, but at no gain for borrower
\Rightarrow Social losses are key

Other Comments

The theorems

- Theorem 1: $V(b)=\sup _{T} W(b, T)=W(b, T(b))$ Equal budget sets in V and W with short-term debt only
- Theorem 2: $V(\tilde{b}) \leq V(b)$ if b and \tilde{b} have same market value
- Theorem 2 not proved for many maturities case?

Minor points

- How did we get here if $\beta(1+r)=1$?
- More generally, empirical relevance?
- Run extension; acceleration assumption

Conclusion

A deep paper

- Makes several points that are partly connected
- Standard and non-standard assumptions are key

Sometimes only scant intuition (proofs don't help)
Links to literature should be discussed

- Debt overhang
- Prop. 5 in Niepelt (2014): With risk neutrality, only shortterm debt issuance (although $\lambda \not \not b b$)

References
Niepelt, D. (2014), ‘Debt maturity without commitment', Journal of Monetary Economics 68(S), 37-54.

