Aguiar and Amador

Take the Short Route How to repay and restructure sovereign debt with multiple maturities

Dirk Niepelt Study Center Gerzensee; U of Bern; CEPR June 2015

Introduction

Food for thought in a tractable model

- Repay short-term debt (first) when de-leveraging
- Thm 1: Short-term debt operations suffice
- Thm 2: Long-term operations may be counter productive

Standard and non-standard assumptions

- $\beta(1+r) = 1$ (non-standard)
- No risk apart from risky default cost (not unusual)
- $\lambda \perp b$ in crisis region of interest (non-standard)
- Social losses of default (standard)

Discussion

- Slicing the results differently
 - 1. De-leveraging is optimal under commitment to *T* (Not only without commitment)
 - 2. Lack of commitment to *T* is not binding when relying on short-term debt operations (Not only on de-leveraging paths)
- Understand role of assumptions, differences to Niepelt (2014)

Life in the Crisis Zone

De-leveraging

A savings-cum-exit-time problem

- Perfect smoothing before and after T, "jump" at exit time
- Before: Flat consumption due to $\beta(1+r)=1$, discount factor $\beta(1-\lambda)$, Arrow security return $(1+r)(1-\lambda)^{-1}$
- After: Ditto, with $\lambda = 0$
- "Jump" due to multiplier

$$\max_{b_{S,T}} u(\ldots + b_{S,T}) + \beta u(\ldots - (1+r)b_{S,T}) \quad \text{s.t. } \bar{B} \ge b_{L,0} + b_{S,T}$$

Why exit the crisis zone?

- Staying put costs $r + \lambda$ per unit of short-term debt per period
- The λ component reflects social losses It compensates for risk of default when lenders receive zero although borrower bears cost
- Exiting the crisis zone and eliminating the λ component is worth it, unless finite T strongly undermines consumption smoothing
- \Rightarrow Social losses are key

$$T = 1$$

 $W(b_{L,0}, b_{S,0}, T) = 2.12662$

$$T = 1,2$$

 $W(b_{L,0}, b_{S,0}, T) = 2.12662, 2.99073$

$$T = 1, 2, 3$$

 $W(b_{L,0}, b_{S,0}, T) = 2.12662, 2.99073, 2.95469$

$$T = 1, 2, 3, 4$$

 $W(b_{L,0}, b_{S,0}, T) = 2.12662, 2.99073, 2.95469, 2.89935$

$$T = 1, 2, 3, 4, 5$$

 $W(b_{L,0}, b_{S,0}, T) = 2.12662, 2.99073, 2.95469, 2.89935, 2.85761$

Long- vs. short-term debt

- Servicing long-term debt costs just *r* per period
- Price effect due to default risk materializes at issuance
- With outstanding long-term debt, price effect is a bygone
- ⇒ De-leveraging incentives only are present with short-term debt exposure
- ⇒ More generally, initial debt composition affects de-leveraging incentives (return to this later)

Robustness of the de-leveraging result

- Additional, "intermediate" maturities don't make a difference
 - The shorter the duration, the larger the need for rollovers and thus, the default risk/social loss component that gets "re-priced" and induces de-leveraging
- Smaller β (standard assumption) does make a difference Extreme case: $\beta = 0$ (top of debt-Laffer curve)
- \Rightarrow The de-leveraging result is not general, but it is interesting precisely because it holds when $\beta(1+r)=1$

Time Consistency

Initial debt composition affects de-leveraging incentives

Standard sovereign debt model

- Debt affects default risk directly and indirectly, through subsequent rollover decisions
- Price effects reflect default risk/social losses
- They vary by maturity, inducing an optimal composition

This model

• Price effects only work through T (since $\lambda \perp b$) which is endogenous to debt composition

Consequences of lack of commitment

Standard sovereign debt model

• Fully aligning ex-ante and ex-post incentives is impossible

This model

- Alignment is possible
 Only need to render choice of *T* time consistent
- \Rightarrow Crucial $\lambda \perp b$ assumption

How to render choice of *T* time consistent?

- Ex-ante choice internalizes all future price effects
- Ex-post choice no longer internalizes bygones
- To guarantee consistency, "not-bygones" ex ante should remain "not-bygones" ex post
 Fully relying on short-term debt operations achieves this
 Relevant default risk/social losses get "re-priced" in each period (at each rollover)
- \Rightarrow Scant intuition in paper

Why are long-term debt operations counter productive?

- Swapping long- for short-term debt undermines alignment But it triggers appreciation of long-term debt

 Mutual gains could be realized—but *not in the market*, due to holdup
 - Cf. debt overhang literature
- \Rightarrow Social losses are key
 - Swapping short- for long-term debt undermines alignment It also dilutes long-term debt, but at *no gain* for borrower
- \Rightarrow Social losses are key

Other Comments

The theorems

- Theorem 1: $V(b) = \sup_T W(b, T) = W(b, T(b))$ Equal budget sets in V and W with short-term debt only
- Theorem 2: $V(\tilde{b}) \leq V(b)$ if b and \tilde{b} have same market value
- Theorem 2 not proved for many maturities case?

Minor points

- How did we get here if $\beta(1+r) = 1$?
- More generally, empirical relevance?
- Run extension; acceleration assumption

Conclusion

A deep paper

- Makes several points that are partly connected
- Standard and non-standard assumptions are key

Sometimes only scant intuition (proofs don't help)

Links to literature should be discussed

- Debt overhang
- Prop. 5 in Niepelt (2014): With risk neutrality, only short-term debt issuance (although $\lambda \not\perp b$)

*

References

Niepelt, D. (2014), 'Debt maturity without commitment', *Journal of Monetary Economics* **68**(S), 37–54.