
Online Appendix

C Calibration Strategy and Numerical Methods

C.1 Law of Motion for Infections

In this appendix, we describe how we use information about parameter values in

the canonical SIR model to deduce parameter values for the law of motion (1).

C.1.1 Canonical SIR Model

The canonical SIR model due to Kermack and McKendrick (1927) specifies laws of

motion for the population shares of three groups: the “susceptible,” the “infected”

or “infectives,” and the “removed.” Their respective population shares at time

t ≥ 0 are denoted by x(t), ι(t), and z(t), respectively, where x(t)+ι(t)+z(t) = 1.60

We normalize the mass of the total population at time t = 0 to unity.

At time t = 0 the population consists of x(0) susceptible persons and a few

infected persons, ι(0). There are no removed persons at this time, z(0) = 0. In

each instant after time t = 0, infected persons transmit the disease to members

of the susceptible group and a share of the infected either dies or recovers and

develops immunity. Formally,

ẋ(t) = −b(t)x(t)ι(t), (12)

ι̇(t) = −ẋ(t)− (cd + cr)ι(t), (13)

ż(t) = (cd + cr)ι(t). (14)

Here, b(t) denotes a possibly time-varying infection rate. The extent to which

susceptible persons are infected depends on their number, x(t); the infection rate,

b(t); and the population share of infected persons. The number of infected persons

increases one-to-one with the susceptible persons that get infected, while a share

c ≡ cd + cr of the infected population dies or recovers; the coefficients cd and cr

parameterize the flow into death and recovery, respectively.

Consider the case where b(t) is constant at value b. Inspection of equations (12)

and (13) reveals that for bx(0) > c the share of infected persons increases until it

reaches a maximum when x(t) = c/b; thereafter, the share declines. Intuitively,

when x(0) falls short of c/b (the “herd immunity level”) then there are fewer

60We follow the notation introduced by Kermack and McKendrick (1927) except for denoting

the share of infected by ι rather than y.
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new infections of susceptible persons than outflows from the infected pool due to

recoveries and death. As is well known (e.g., Theorem 2.1 in Hethcote, 2000), x(∞)

falls short of the herd immunity level unless x(0) = c/b = x(∞) and ι(0) = 0.61

In the SIR-S model a share γ of the removed population loses immunity and

moves back to the susceptible pool. Accordingly, the dynamic system is given by

ẋ(t) = −b(t)x(t)ι(t) + γz(t),

ι̇(t) = b(t)x(t)ι(t)− cy(t),

ż(t) = cι(t)− γz(t).

In steady state this reduces to

γz = bxι = cι.

Calibration. We measure time in days and use information about the spread of

COVID-19 in the United States to calibrate the model. We associate t = 0 with

16 March 2020, the date at which the median U.S. state closed schools and public

health authorities considered further restrictions.62

Following Atkeson (2020) and the sources cited therein we assume that the flow

rate from the infected to the removed population equals c = 1/18, corresponding

to an exponentially distributed infection duration that averages 18 days.63 To

calibrate b we rely on information in Ferguson et al. (2020) who argue that the

“basic reproduction number” R0 = b/c for COVID-19 equals approximately 2.4.

This implies b = 0.1333.

By March 16, 2020 the U.S. reported a total of 91 COVID-19 deaths out

of a population of 328 million.64 With an infection fatality rate of 0.58 percent

(Menachemi et al., 2020) this implies z(0) = 91/(0.58%·328·106) = 0.4783·10−4.65

We use the following well-known result (e.g., Theorem 2.1 in Hethcote, 2000):

61Note also, from equation (13), that at the beginning of an epidemic with x(t) ≈ 1 and

z(t) ≈ 0, b approximately equals the growth rate of the number of persons who are or were

infected, ι̇(t)+ż(t)
ι(t)+z(t) = b x(t)ι(t)

ι(t)+z(t) ≈ b.
62The median state closed restaurants and imposed restrictions on public gatherings on

17 March 2020. Puerto Rico imposed a stay-at-home order on 15 March 2020. See

https://web.csg.org/covid19/executive-orders/.
63Note that

∫∞
0
ce−ctt dt = 1/c.

64See https://github.com/nytimes/covid-19-data/blob/master/us.csv.
65See Farboodi et al. (2021) for similar calculations.
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Proposition 4. Let s < 0 denote a start date. In the canonical SIR model with

ι(s) > 0 and b(t) = b > c/x(s),

1− z(0) = x(0) + ι(0) = x(s) + ι(s) +
c

b
ln

(
x(0)

x(s)

)
.

The long-run share of the susceptible population, x(∞), solves the equation

x(∞) = x(0) + ι(0) +
c

b
ln

(
x(∞)

x(0)

)
.

Since the number of infected or removed persons was negligible before mid

March the first set of equalities implies

1− z(0) = 1+
1

2.4
ln

(
x(0)

1

)
⇒ x(0) = 1− 0.1148 · 10−3, ι(0) = 0.6696 · 10−4.

The second condition implies x(∞) = 0.1214.

C.1.2 Generalized Logistic Model

Given y(0) = ι(0) + z(0) = 0.6696 · 10−4 + 0.4783 · 10−4 = 0.1148 · 10−3 and

ȳ = 1− x(∞) = 0.8786, we choose β and ω in equation (1) (subject to g(a) = 1)

to best fit the path for f(t) according to the law of motion (1) to the path for ι(t)

in the calibrated SIR model (allowing for an arbitrary factor of proportionality).

This yields β = 0.8346 · 10−1 and ω = 0.6662. Figure 6 illustrates the very close

parallels between the predictions of the canonical SIR model (in blue) and the

generalized logistic model (in black).
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Figure 6: Dynamics in the canonical SIR model (blue) and in the generalized
logistic model (black). SIR model: x(t) (dotted), ι(t) (solid), and z(t) (dashed).
Generalized logistic model: f(t) (solid, scaled), and y(t) (dashed).
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C.2 Costs of Infection

In this appendix, we discuss the calibration of the parameters representing private

and social costs of infection. Recall that ξ = ζ ai
a
+ (1 − ζ). We calibrate ζ

based on U.S. estimates of hospitalization costs and the value of life by Bartsch

et al. (2020) and Hall et al. (2020), respectively. Bartsch et al. (2020) estimate

direct medical costs including follow up expenses (over a year) of $1.25 trillion

under the assumption that eighty percent of the U.S. population are infected. We

scale this number reflecting our modified specification of ȳ = 1 − x(∞) (0.8786

rather than 0.8000); this yields (unconditional) costs per capita of about $4,185.
Hall et al. (2020) assess the value of life at $270,000 per year. With an average

remaining life expectancy of 14.5 years every life lost to COVID-19 thus costs

$3,915,000. Conditional on the infection fatality rate of 0.58 percent (Menachemi

et al., 2020) and ȳ = 0.8786 this implies (unconditional) costs due to COVID-

19 deaths of $19,950 per capita. Under the assumption that individuals fully

internalize mortality risk but not marginal social medical costs we conclude that

ζ = 19, 950/(19, 950 + 4, 185) = 0.8266.

To calibrate ψ based on the dollar amount $19,950 + $4,185 we follow the

approach of Hall et al. (2020) who quantify willingness to pay for reduced mortality

risk. Under our baseline assumptions of an infection risk of 0.8786, an infection

fatality rate of 0.58 percent, and relative risk aversion of one we find that an

individual would sacrifice a share 1 − ϕ = 0.3581 of consumption to eliminate

COVID-19 related mortality risk (neglecting other costs).66 In the model the

annual utility costs of sacrificing this share then equal67

365 · {(1 + ln(a⋆)− a⋆)− (1 + ln(a⋆ϕ)− a⋆)} = −365 ln(ϕ).

66Let ℓ denote expected costs due to loss of life (which we calibrate to $19,950, see above)

relative to average consumption (which Hall et al. (2020) set to $45,000). This ratio, which

represents the sacrifice ratio of an agent with linear preferences, equals 0.4433. Hall et al. (2020)

derive ϕ from ℓ based on the relationship ϕ = [1+(r−1)ℓ]1/(1−r) where r denotes the coefficient

of relative risk aversion. For r = 0 this yields 1 − ϕ = ℓ; for r → 1 (logarithmic utility),

1 − ϕ → 1 − exp(−ℓ) or roughly 0.3581. For r = 2 we find 1 − ϕ = 0.3071. Hall et al. (2020)

assume CRRA preferences, a coefficient of relative risk aversion of two, and mortality risk of 0.44

percent per year. They report that the share of consumption that an individual would sacrifice

to eliminate COVID-19 related mortality risk equals 28 percent.
67We neglect time discounting as do Hall et al. (2020). Note that only the benefit of economic

activity (“consumption”) not the cost associated with it (“labor supply”) is reduced by the

fraction 1− ϕ.
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Since without reductions in activity almost all infections occur during the first year

(
∫ 365

0
f(t)dt ≈ ȳ) we conclude that the social cost parameter reflecting mortality

risk, ψ̂, equals ψ̂ = −365 ln(ϕ)/ȳ = 184.2. Adding medical costs we arrive at an

estimate for ψ = ψ̂/ζ of 222.8.68

According to the model, the unconditional per-capita utility cost of not ad-

justing behavior (i.e. a = a⋆) is approximately 222.8, and corresponds to a dollar

amount of $19,950 + $4,185. This allows us to transform welfare measures in

utility units into their equivalent dollar amounts.

Endogenous Costs. When ψ is a function of the state we need to modify the

calibration. To capture congestion effects we replace ψ in (3) by ψfy(t)(1−(y(t)
ȳ
)ω)

where ψf > 0. Using∫ ∞

0

f(t)y(t)

(
1−

(
y(t)

ȳ

)ω)
dt =

∫ ȳ

0

y

(
1−

(
y

ȳ

)ω)
dy =

ωȳ2

2(2 + ω)

and under the maintained assumption that almost all infections occur during the

first year we conclude that ψf = ψ2(2 + ω)/(ωȳ).

Suppose next that we replace ψ in (3) by ψ(1−ℓy(t)/ȳ), representing learning-

by-doing. Consistent with evidence we assume that the learning effects let unit

costs drop by a third over the course of the epidemic: ℓ = 1/3.69

C.3 Numerical Methods

We use Mathematica to numerically solve for the value function and associated pol-

icy function. The domain is discretized using fourth-order finite difference methods

to approximate the continuous HJB equation. The value function that solves the

discretized HJB equation defined over the continuous state space converges to the

value function of the original continuous HJB under our model assumptions (see

Bardi and Capuzzo-Dolcetta (1997, theorem 1.1, section VI)). The method of lines

is used for time integration and standard numerical methods for solving ODEs,

68The calibration of ψ is independent of our preference assumption. If we stipulate r = 2 rather

than r = 1 (see footnote 66) then the annual utility costs of sacrificing the consumption share

1−ϕ equals 365·
{
−(a⋆)−1 + (a⋆ϕ)−1

}
= −365(1−ϕ−1). But ln(1−0.3581) ≈ 1−(1−0.3071)−1,

so the different value for r does not materially affect ψ.
69RECOVERY Collaborative Group et al. (2020) conducted a randomized trial in the UK

finding that among 2104 patients that received dexamethasone mortality was reduced by one-

third in patients receiving mechanical ventilation and by one-fifth in patients receiving oxygen

but not mechanical ventilation.
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such as the Runge-Kutta method, are used to solve for the discretized HJB. Barles

and Souganidis (1991) show that the finite difference method satisfies the mono-

tonicity, consistency and stability conditions that guarantee convergence of the

approximation to the unique viscosity solution of the HJB equation.

As a robustness check we solve the HJB equation using the Initial Value Prob-

lem Differential-Algebraic Equations (IDA) method. This is a robust and efficient

method designed for differential-algebraic equations that exploits the algebraic

constraints in ODEs. The results we obtain are essentially identical.

D Viscosity Solutions of Non-Linear Partial Dif-

ferential Equations

A generic HJB equation takes the form vd(y, d) + F (y, v(y, d), Dyv(y, d)) = 0

where v : Ω× [0, T ] → R is a continuous value function; Ω ⊆ Rn and [0, T ] denote

the endogenous and exogenous state spaces, respectively; Dyv(y, d) denotes the

gradient with respect to the endogenous state; and F is smooth. Crandall and

Lions (1983) introduce the notion of viscosity solution of a partial differential

equation such as this HJB equation; for a textbook treatment see, e.g., Bardi and

Capuzzo-Dolcetta (1997).

For all (y, d) ∈ Ω × [0, T ] define the superdifferential and subdifferential, re-

spectively, of v as the following sets:

D+v(y, d) =

{
p ∈ Rn : lim sup

x→y

v(x, d)− v(y, d)− p.(x− y)

|x− y|
≤ 0

}
,

D−v(y, d) =

{
q ∈ Rn : lim inf

x→y

v(x, d)− v(y, d)− q.(x− y)

|x− y|
≥ 0

}
.

Note that if both D+v(y, d) and D−v(y, d) are non-empty then D+v(y, d) =

D−v(y, d) and v is differentiable at (y, d).

A continuous function w is a viscosity subsolution of the HJB equation if

wd(y, d) + F (y, w(y, d), p) ≤ 0 ∀p ∈ D+w(y, d), ∀(y, d) ∈ Ω× [0, T ].

It is a viscosity supersolution if

wd(y, d) + F (y, w(y, d), q) ≥ 0 ∀q ∈ D−w(y, d), ∀(y, d) ∈ Ω× [0, T ].

If w is a viscosity subsolution and supersolution of the HJB equation then w is a
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viscosity solution of the HJB equation.

E Other Properties of the Value Function

Lemma 2. Under assumptions 1 and 2 and if T = ∞, V has a unique minimum

at ymin < ȳ/(1 + ω)1/ω. Parameter changes that imply a higher (lower) ymin also

imply less (more) pronounced convexity of V at ymin. Moreover,

max
y∈[ymin,ȳ]

V ′(y) = V ′(ȳ) =
g(a⋆)βȳωψ

ρ+ ν + g(a⋆)βȳω
< ψ

and V is strictly convex over the domain [ymin, ȳ].

Proof. We assume that V is twice differentiable. From the government’s HJB

equation, the envelope condition with T = ∞ reads

(ρ+ ν)V ′(y) = −g(a(y))βȳ ×[(
1− (1 + ω)

(
y

ȳ

)ω)
(ψ − V ′(y))− y

(
1−

(
y

ȳ

)ω)
V ′′(y)

]
.(15)

Let ŷ denote a point where V reaches a local minimum or maximum. Evaluated

at ŷ the envelope condition reduces to(
1− (1 + ω)

(
ŷ

ȳ

)ω)
ψ = ŷ

(
1−

(
ŷ

ȳ

)ω)
V ′′(ŷ). (16)

Note that any extremum is locally unique since V ′′(ŷ) = 0 would only be consistent

with ŷ = ȳ/(1 + ω)1/ω.

Uniqueness of ymin. To see that V has a unique minimum suppose to the

contrary that there exist multiple local minima. Consider two neighboring minima

at, say, ya and yc with ya < yc. Then there must exist a local maximum at some

yb with ya < yb < yc. Since V ′′(ya) > 0, V ′′(yb) < 0, and V ′′(yc) > 0 the

right-hand side of condition (16) evaluated at ya, yb, and yc is strictly positive,

negative, and positive, respectively. The sign of the left-hand side of condition (16)

evaluated at the same points cannot alternate in this way. We have thus arrived

at a contradiction which proves that V has a unique minimum, ymin.

Upper Bound on ymin. To derive a contradiction suppose first that ymin >

ȳ/(1 + ω)1/ω. Since the minimum is unique this implies V ′(ȳ/(1 + ω)1/ω) < 0.
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From the envelope condition (15),

(ρ+ ν)V ′(ȳ/(1 + ω)1/ω) = g(a(ȳ/(1 + ω)1/ω))βȳ2
ω

(1 + ω)1+1/ω
V ′′(ȳ/(1 + ω)1/ω)

and thus V ′′(ȳ/(1 + ω)1/ω) < 0. Since by assumption ymin > ȳ/(1 + ω)1/ω there

must exist an inflection point, say yi, with ȳ/(1 + ω)1/ω < yi < ymin, V ′(yi) < 0,

and V ′′(yi) = 0. But evaluated at yi the envelope condition implies

(ρ+ ν)V ′(yi)︸ ︷︷ ︸
<0

= − g(a(yi))βȳ︸ ︷︷ ︸
>0

(
1− (1 + ω)

(
yi

ȳ

)ω)
︸ ︷︷ ︸

<0

(ψ − V ′(yi))︸ ︷︷ ︸
>0

,

which yields a contradiction. We conclude that ymin ≤ ȳ/(1 + ω)1/ω.

In fact, ymin < ȳ/(1+ω)1/ω; for if ymin equalled ȳ/(1+ω)1/ω then the minimum

could not be unique since condition (16) would imply V ′′(ȳ/(1 + ω)1/ω) = 0. We

conclude that ymin < ȳ/(1 + ω)1/ω.

Effect of Parameters on Convexity of V at ymin. From equation (16),

V ′′(ymin) =
(
1− (1 + ω)

(
ymin

ȳ

)ω)
ψ/ymin/

(
1−

(
ymin

ȳ

)ω)
. This is strictly de-

creasing in ymin. The result then follows.

Maximum Slope of V . Let Y = [ymin, ȳ] and suppose first that there exists no

y ∈ Y such that V ′′(y) = 0 (no inflection point on the domain Y). Since V (y) has

a unique global minimum at ymin, V (y) is strictly increasing and convex in this

case for all y ∈ Y \ ymin, and thus maxy∈Y V
′(y) = V ′(ȳ). Suppose next that there

exists some y ∈ Y such that V ′′(y) = 0 (at least one inflection point on the domain

Y). Let Y i ⊂ Y denote the set of inflection points and let yi = argmaxy∈Yi V ′(y).

Then, maxy∈Y V
′(y) = max[V ′(yi), V ′(ȳ)]. From the envelope condition (15) and

the fact that V ′′(yi) = 0, (ρ + ν)V ′(yi) = −g(a(yi))βȳ
(
1− (1 + ω)

(
yi

ȳ

)ω)
(ψ −

V ′(yi)) or

V ′(yi) =
g(a(yi))βȳ

(
(1 + ω)

(
yi

ȳ

)ω
− 1

)
ψ

(ρ+ ν + g(a(yi))βȳ
(
(1 + ω)

(
yi

ȳ

)ω
− 1

) ≤ g(a⋆)βȳωψ

ρ+ ν + g(a⋆)βȳω
= V ′(ȳ),

where the weak inequality follows from (1+ω)
(
yi

ȳ

)ω
− 1 ≤ ω, a(yi) ≤ a⋆, and the

fact that g is increasing; and the equality on the right-hand side follows directly

from condition (15). Accordingly, maxy∈Y V
′(y) = V ′(ȳ). We conclude that in

either case maxy∈Y V
′(y) = V ′(ȳ).
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Strict Convexity of V on the Domain Y. From the previous results V (y) is

weakly convex in a neighborhood of ȳ and strictly convex at ymin.

[1] Suppose first that there do not exist open intervals on the domain Y such

that V ′′(y) = 0 for all points in the interval (however, there may exist points

y ∈ Y with V ′′(y) = 0). Given the convexity of V at ȳ and ymin, the number

of inflection points on the domain Y at which V ′(y) changes signs must be even

(including equal to zero). To arrive at a contradiction suppose that the number

is strictly positive and consider the smallest two neighboring inflection points

on the domain Y , say, ya and yb with ya < yb. Given the specified assumptions,

0 < V ′(ya) < ψ (using the above argument on the maximum slope of V ), V ′′(ya) =

V ′′(yb) = 0, and V ′′(y) < 0 < V ′(y) for all y ∈ (ya, yb). Note that ya > ȳ/(1 +

ω)1/ω since the envelope condition (15) and V ′′(ya) = 0 imply (ρ + ν)V ′(ya) =

−g(a(ya))βȳ
(
1− (1 + ω)

(
ya

ȳ

)ω)
(ψ − V ′(ya)) such that 0 < V ′(ya) < ψ requires

1− (1 + ω)
(
ya

ȳ

)ω
< 0. Accordingly, 1− (1 + ω)

(
y
ȳ

)ω
< 0 for all y ∈ (ya, yb).

Rewriting the envelope condition (15) as

g(a(y)) = − (ρ+ ν)V ′(y)

βȳ
[(

1− (1 + ω)
(
y
ȳ

)ω)
(ψ − V ′(y))− y

(
1−

(
y
ȳ

)ω)
V ′′(y)

] (17)

and differentiating with respect to y gives, for all y ∈ (ya, yb),

g′(a(y))a′(y) = − (ρ+ ν)V ′′(y)

βȳ
[(

1− (1 + ω)
(
y
ȳ

)ω)
(ψ − V ′(y))− y

(
1−

(
y
ȳ

)ω)
V ′′(y)

]
+

(ρ+ ν)V ′(y)D

βȳ
[(

1− (1 + ω)
(
y
ȳ

)ω)
(ψ − V ′(y))− y

(
1−

(
y
ȳ

)ω)
V ′′(y)

]2
=

V ′′(y)

V ′(y)
g(a(y))︸ ︷︷ ︸
<0

+(ρ+ ν)V ′(y)︸ ︷︷ ︸
>0

−{> 0} − 2{> 0} − {> 0}V ′′′(y)

{> 0}
,

whereD ≡ (V ′(y)−ψ)ω(1+ω)yω−1

ȳω
−2

(
1− (1 + ω)

(
y
ȳ

)ω)
V ′′(y)−y

(
1−

(
y
ȳ

)ω)
V ′′′(y)

and {> 0} denotes strictly positive terms (which might differ from each other).

Since V is strictly concave for y ∈ (ya, yb) there exists some nonempty Z ⊆ (ya, yb)

with V ′′′(y) > 0 for all y ∈ Z. Since g is increasing the preceding equality implies

that a′(y) < 0 for all y ∈ Z.

The government’s first-order condition implies

u′(a(y))

g′(a(y))
= βȳy

(
1−

(
y

ȳ

)ω)
(ψ − V ′(y)). (18)
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Differentiating the right-hand side with respect to y yields

βȳ

[(
1− (1 + ω)

(
y

ȳ

)ω)
(ψ − V ′(y))− y

(
1−

(
y

ȳ

)ω)
V ′′(y)

]
,

which is strictly negative for all y ∈ (ya, yb) because of condition (17) and the

fact that g(a(y)) > 0. Accordingly, the right-hand side of equation (18) is strictly

decreasing in y, and so must be the left-hand side. This requires a′(y) > 0 for

all y ∈ (ya, yb) since g is weakly convex (assumption 1) and u strictly concave

(assumption 2). In particular, a′(y) > 0 for all y ∈ Z. We have thus arrived at a

contradiction and conclude that there exist no inflection points on the domain Y .

[2] Suppose next that there do exist open intervals on the domain Y such that

V ′′(y) = 0 for all points in the interval (there may also exist inflection points).

Consider such an open interval, say, (ya, yb). Then, V ′′(y) = 0 for all y ∈ (ya, yb).

Differentiating the envelope condition with respect to y gives, for all y ∈ (ya, yb),

g′(a(y))a′(y) = − (ρ+ ν)V ′′(y)

βȳ
[(

1− (1 + ω)
(
y
ȳ

)ω)
(ψ − V ′(y))− y

(
1−

(
y
ȳ

)ω)
V ′′(y)

]
+

(ρ+ ν)V ′(y)D

βȳ
[(

1− (1 + ω)
(
y
ȳ

)ω)
(ψ − V ′(y))− y

(
1−

(
y
ȳ

)ω)
V ′′(y)

]2
= (ρ+ ν)V ′(y)︸ ︷︷ ︸

>0

(V ′(y)− ψ)ω(1 + ω)y
ω−1

ȳω

{> 0}
,

where {> 0} denotes a strictly positive term and where we use the fact that

V ′′(y) = V ′′′(y) = 0 for all y ∈ (ya, yb). Since g is increasing the preceding

equality implies that a′(y) < 0 for all y ∈ (ya, yb).

Differentiating the right-hand side of the government’s first-order condition

with respect to y yields a strictly negative expression for all y ∈ (ya, yb), because

of condition (17), g(a(y)) > 0, and V ′′(y) = 0. Accordingly, the right-hand side of

equation (18) is strictly decreasing in y, and so must be the left-hand side, which

requires a′(y) > 0 for all y ∈ (ya, yb). We have thus arrived at a contradiction and

conclude that there exist no open intervals on the domain Y such that V ′′(y) = 0

for all points in the interval.

[3] We conclude from [1] and [2] that V is strictly convex on the domain Y .
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