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We develop a single-state model of epidemic control and equilibrium dynamics, and we show that 
its simplicity comes at very low cost during the early phase of an epidemic. Novel analytical 
results concern the continuity of the policy function; the reversal from lockdown to stimulus 
policies; and the relaxation of optimal lockdowns when testing is feasible. The model’s enhanced 
computational efficiency over SIR-based frameworks allows for the quantitative assessment of 
various new scenarios and specifications. Calibrated to reflect the COVID-19 pandemic, the model 
predicts an optimal initial activity reduction of 38 percent, with subsequent stimulus measures 
accounting for one-third of the welfare gains from optimal government intervention. The threat 
of recurrent infection waves makes the optimal lockdown more stringent, while a linear or near

linear activity-infection nexus, or strong consumption smoothing needs, reduce its stringency.

1. Introduction

Sudden epidemiological shocks such as the onset of the COVID-19 pandemic expose societies to severe tradeoffs between economic 
activity and public health. Early on in an epidemic, these tradeoffs are highly uncertain as it takes time to learn about epidemiolog

ical characteristics, the arrival rate of an effective vaccine or cure, and other factors determining likely scenarios. This uncertainty 
complicates a robust and effective policy response. What is needed is a flexible and computationally efficient framework to easily 
evaluate policy responses in a variety of scenarios.

No such framework is currently available. The large macro-epidemiological literature triggered by the recent pandemic typically 
employs the classical SIR model (Kermack and McKendrick, 1927) with two epidemiological states. To analyze optimal policy in this 
environment, authors routinely adopt strong (but different) assumptions they deem necessary to allow for numerical simulations.1 As 
a consequence, the literature contains a large set of distinct, mostly quantitative findings, and commonalities are rare and obscured.

We propose an alternative framework with a single epidemiological state variable. Leveraging its simplicity and the resulting com

putational efficiency, we identify key mechanisms and characterize optimal policy across a wide range of scenarios. While the one-state 
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simplification has drawbacks—most notably, it implies that policy and long-run health outcomes are orthogonal—we demonstrate 
that this is irrelevant for the optimal policy during the critical early stages of an epidemic, when SIR-based frameworks also exhibit 
near orthogonality. Indeed, under a baseline parameterization and scenario, the optimal policy paths in our model and a standard 
SIR-based framework virtually coincide for many months. Accordingly, we view our model as a robust and flexible tool for analyzing 
trade-offs at the onset of an epidemic.

The generic epidemiological framework we use generalizes the ``simple epidemiological model'' (Bailey, 1975) and captures the 
essence of infection dynamics, namely the interaction between those who have contracted the disease and those who have not but 
are susceptible. New infections are driven by complementarities between the two groups, and cumulative infections—our single 
endogenous state variable—approximately follow a logistic law of motion, which accurately approximates dynamics in two-state SIR 
models as we show.

The economic layer that we superimpose on this epidemiological structure incorporates households and a government. As is 
standard in the literature, we assume that households derive utility from economic activity, both positive because activity generates 
consumption, and negative because it requires effort. In addition, higher activity increases the risk of infections, which are privately 
and socially costly. Households are fully aware of aggregate infection dynamics, behave individually rationally, and in equilibrium 
shoulder the entire social costs of infection. Nevertheless, they fail to fully internalize the consequences of their activity choices, and 
this gives rise to ``static'' and ``dynamic'' externalities.

Such externalities call for government intervention (Gersovitz and Hammer, 2004). We find that this goes both ways. We prove that 
the optimal intervention features lockdowns in the beginning of the epidemic followed by ``inverse lockdowns,'' namely interventions 
to stimulate private sector activity. Intuitively, as the epidemic progresses, there comes a point at which individual households act too 
cautiously, thereby unwillingly delaying the end of the epidemic. At this point, the government optimally stops curbing activity and 
starts promoting it. Our result may rationalize measures imposed during the COVID-19 pandemic such as monetary easing, temporary 
sales tax reductions, subsidies, or ``return-to-work bonuses.''2

Next, we allow lockdowns to be accompanied by testing policies, which identify infectious individuals with a certain probability. 
When the government has the power to temporarily quarantine such individuals, testing slows down infections and is valuable, 
rendering lockdowns and testing substitutes. Conversely, the prospect of future testing capabilities renders lockdowns and testing 
complements: The government optimally curtails activity to buy time for these capabilities to become available.

We show that the situation is quite different under laissez faire. If privately administered tests make individuals aware of the 
fact that they gained immunity, then they make these individuals return to work full time, raising the infection risk for others, and 
motivating all those unaware of their infection status to turn more and more cautious as the epidemic progresses. What is more, 
the prospect of learning about one’s immunity status, and thus returning to work full time, introduces an upside in the program of 
households and reduces the incentive to take precautions. In fact, we prove that in the early stages of an epidemic, testing fosters 
equilibrium activity.

Our third set of findings comprises quantitative results. Exploiting the fact that the model can easily be numerically solved and 
simulated, we derive the optimal policy under general assumptions about the elasticity of the activity-infection nexus—unlike much 
of the literature, which typically assumes an elasticity of one or two to avoid problems with the numerical solution. This flexibility 
allows us to address the mixed epidemiological evidence on the elasticity (Hethcote, 1989). It also opens the possibility to adapt the 
model’s policy recommendations to regional (e.g., rural vs. urban) or other disparities.

We also study the role of other key parameter (e.g., the intertemporal elasticity of substitution) and of the cost function associated 
with infections, allowing for ``flattening-the-curve'' motives as well as learning effects. Moreover, we analyze optimal policy under 
recurrent infection waves or when the government’s instruments are limited such that inverse lockdowns become infeasible.

Calibrated to match COVID-19 infection data in the U.S., the baseline model indicates that from mid-March 2020, economic 
activity should have been immediately reduced by nearly forty percent. This policy would have increased welfare by approximately 
0.32 percent of lifetime consumption (corresponding to around 2500 U.S. dollars per capita in present value) compared to a laissez

faire approach. Across all the specifications and scenarios we examine, many yield expected results. The optimal lockdown lengthens 
(in state space), and activity falls, when the fatality rate or the arrival rate of a cure increase, when congestion effects are stronger, 
or when learning effects are weaker. Testing policies that reduce the effective infection rate, or the prospect of such policies, increase 
the lockdown duration as well.

Other simulation results, specifically some quantitative effects, are more surprising. The threat of recurrent infection waves triggers 
a large increase in the optimal lockdown duration and strictness, while a linear or near-linear activity-infection nexus or strong 
consumption smoothing needs have the opposite effect. The model implied welfare gains suggest that government intervention is 
particularly important when recurrent infection waves are a threat. The most striking simulation result concerns inverse lockdowns�-

stimulus measures the government imposes once the economy starts to see the end of the tunnel: It is these measures that are 
responsible for a large, maybe even the dominant share of the welfare gains from optimal government intervention.

Crucially, our model replicates the predictions of a prototypical model based on the two-state SIR framework when we calibrate it 
correspondingly. Fig. 1 plots the optimal activity level (which varies between zero and one) in Farboodi et al. (2021) and in our model 
against the cumulative share of the infected population (𝑦).3 During the initial phase of the epidemic, the two predictions essentially 

2 In the U.S. the National Economic Council urged lawmakers to replace a lump-sum transfer with a ``return-to-work bonus'' (The Wall Street Journal, June 15, 2020). 
In the U.K. during August 2020 the government implemented a program aimed at encouraging people to eat in restaurants (Fetzer, 2022).

3 See appendix A for a detailed discussion.
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Fig. 1. Optimal policy: Logistic model (solid) vs. two-state SIR model (dotted). 

coincide. Intuitively, both the SIR framework’s added complexity of epidemiological dynamics and the resulting endogeneity of long

run health outcomes play practically no role for optimal policy in the early stages of an epidemic. The simplicity and computational 
efficiency of our model therefore come at minimal cost during these early stages.

Our final contribution is of a technical nature. We establish that the value function is differentiable over the entire state space, 
implying that optimal policy is continuous and standard numerical methods may justifiably be applied to simulate the model. This 
puts our framework with one endogenous state variable in stark contrast to much of the macro-epidemiological literature, in which 
the derivation of analytical results is challenging and the applicability of numerical methods questionable because the law of motion 
of infections renders the Hamiltonian function of the control problem non-convex (see, e.g. Calvia et al., 2023).

Related literature Workhorse epidemiological models are due to Kermack and McKendrick (1927) and Bailey (1975); for reviews, 
see, e.g., Hethcote (1989) and Hethcote (2000). The COVID-19 pandemic has spurred broad interest in economic cost-benefit analysis 
in the context of epidemiological dynamics. Early contributions include Atkeson (2020) and Eichenbaum et al. (2021). Alvarez et al. 
(2021) compute the optimal lockdown policy to flatten the infection curve in order to relax health care capacity constraints. Farboodi 
et al. (2021) argue that in equilibrium and under the optimal policy the effective reproduction number remains close to unity.

Gersovitz and Hammer (2004), Bethune and Korinek (2020), and Jones et al. (2021) assess externalities of privately optimal 
precautions in the epidemiological context. In SIR based parallel work Garibaldi et al. (2024) decompose these externalities into 
static and dynamic parts; see also Rachel (2022). We show that dynamic externalities necessarily start negative and eventually turn 
positive; that static externalities are present even when the infection matching function exhibits constant returns to scale; and we 
derive the implications of these facts for optimal ``inverse lockdowns.''

Piguillem and Shi (2022) simulate a scenario with widespread testing. They find that even non-targeted tests are an effective and 
cost-e�icient substitute for lockdowns. Pollinger (2023) assumes that infections stop once the infectious pool falls below a critical 
mass and characterizes optimal suppression policies with or without targeted tests. He finds that testing allows to relax lockdowns. 
We analytically show that testing policies may substitute for lockdowns even in the absence of such a critical mass; and we contrast 
this substitution effect with complementarities that arise from the prospect of future testing capabilities.

Kaplan et al. (2020), Acemoglu et al. (2021), and Ellison (2024) analyze the implications of heterogeneity, including differential 
costs of reduced activity, asymmetric infection dynamics due to ``super spreaders,'' age-dependent fatality rates, or welfare losses due 
to nontargeted measures. Giannitsarou et al. (2021) analyze immunity loss and demographic dynamics. Taking spatial aspects into 
account Bisin and Moro (2022) show how local interactions give rise to matching frictions and local herd immunity effects; Fajgelbaum 
et al. (2021) characterize optimal policy in a related setting. We focus on uniform lockdown policies to study the government’s program 
in a variety of scenarios and extensions. Moreover, we show that in spite of the single endogenous state variable, our analysis allows 
to capture some degree of heterogeneity within groups.

Most of this work focuses almost exclusively on numerical analyses, with Abel and Panageas (2020), Gonzalez-Eiras and Niepelt 
(2020a), Miclo et al. (2022), Rachel (2022), and Toxvaerd (2020) constituting some notable exceptions.4 Our paper combines novel 
analytical results with numerical simulations.

Following Richards (1959) many empirical studies apply the generalized logistic model to epidemic dynamics. For example, Wu 
et al. (2020) simulate COVID-19 infection dynamics in several regions based on the generalized logistic model and they note the 
short-term forecast accuracy of the model. They abstract from behavioral responses, unlike our model.5

4 Toxvaerd (2020) characterizes privately optimal social distancing; Gonzalez-Eiras and Niepelt (2020a) characterize optimal lockdown policies; and Abel and 
Panageas (2020) characterize the optimal steady state in a SIR model with vital dynamics. Miclo et al. (2022) derive the optimal policy under a capacity constraint. 
Rachel (2022) argues that externalities can be negative and optimal policy may avoid recurrent infection waves.

5 Wu et al. (2020) find that ``second waves'' are important in the data but not captured by their model. Our numerical analyses allow for recurrent waves.
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Outline The remainder of the paper is organized as follows. We lay out the model in section 2 and present the conditions charac

terizing first best and equilibrium in section 3. In sections 4 and 5, we characterize externalities, lockdowns, inverse lockdowns as 
well as the implications of testing policies analytically. The quantitative analysis of a series of model modifications and extensions is 
contained in section 6. Section 7 concludes. Auxiliary discussions are relegated to appendices; proofs of lemmas and propositions in 
the main text are collected in appendix B.

2. The model

We consider an infinite horizon economy with households and a government. Time is continuous, 𝑡 ≥ 0.

2.1. Epidemiology

We use an epidemiological framework that is closely related to several canonical models in the epidemiological literature: The SIR 
model due to Kermack and McKendrick (1927), a modified SIR and the simple epidemic model (the SI model) due to Bailey (1975), 
and the SIS model derived from it.6 Our framework incorporates one endogenous state variable (rather than two in the typical SIR 
model) and possibly time as a second state variable (unlike SIR and SIS models). Below, we will also introduce economic activity 
(unlike SIR and SIS models).

2.1.1. Dynamics

The population of mass one consists of mass 𝑥 ``pre-infection'' (for short: ``pre'') households; mass 𝑦 = 𝑦̄−𝑥 ``post-infection'' (``post'') 
households; and mass 1− 𝑦̄ ``neutral'' households. Members of the post group have been infected in the past; members of the pre group 
might be infected in the future; and members of the neutral group cannot become infected, for instance because they are immune.

Initially, at time 𝑡 = 0, the population shares of the pre and post groups are given by 𝑥0 = 𝑦̄−𝑦0 > 0 and 𝑦0 > 0, respectively. While 
the infection status of neutral households never changes, households in the pre group catch the disease according to a generalized 
logistic law of motion,7

𝑑𝑦

𝑑𝑡 
= 𝑓 (𝑦, 𝑎) ≡ 𝑔(𝑎)𝛽𝑦𝑦̄

(
1 −

(
𝑦

𝑦̄

)𝜔)
, 0 < 𝛽,𝜔 <∞. (1)

Accordingly, the share of the pre group changes by 𝑑𝑥∕𝑑𝑡 = −𝑑𝑦∕𝑑𝑡. Variable 𝑎 in equation (1) is an index of economic activity, 
and function 𝑔 represents the activity-infection nexus, that is, 𝑔 is positive and strictly increasing. Parameters 𝛽 and 𝜔 represent 
epidemiological characteristics.

According to equation (1), the post share, 𝑦; the share 𝑦̄; and the infection rate, 𝑔(𝑎)𝛽, (but not time) determine the speed at which 
the shares of pre and post households change. With 𝜔 = 1, the law of motion is symmetric about 𝑦̄∕2; 𝜔 ≠ 1 introduces skewness. 
Starting from 𝑦0 > 0 and with 𝑔(𝑎) > 0, the population share 𝑦 is strictly increasing over time and converges to 𝑦̄; conversely, the 
share of the pre group is strictly decreasing and converges to 0.8 We denote a solution to equation (1) conditional on a control path 
𝐚 and an initial value 𝑦0 by 𝑦(𝑡;𝐚, 𝑦0); when there is no danger of confusion, we drop the two latter arguments. When activity is 
constant at level 𝑎 then9

𝑦(𝑡) = 𝑦̄(
1 + e−𝜔𝑔(𝑎)𝛽𝑦̄𝑡

((
𝑦̄

𝑦0

)𝜔
− 1

))1∕𝜔 . (2)

The law of motion (1) generalizes the SI model (Bailey, 1975), incorporating the effect of economic activity on the infection rate.10

It is also closely related to the SIS model, where infected individuals randomly recover and return to the susceptible pool (Hethcote, 
1989).11 Our framework differs from the SIS model in that we model infections as flows, 𝑓 (𝑡), whereas the SIS model focuses on the 
stock of infected individuals.12

Most importantly, the law of motion (1) is closely related to both the canonical SIR model (Kermack and McKendrick, 1927) 
and the modified SIR model (Bailey, 1975). In their general form, both models describe the evolution of three population groups�-

susceptible, infected, and removed (recovered or deceased)�-based on two endogenous state variables (the shares of two of these 

6 The ``S,'' ``I,'' and ``R'' in SIR, SI, and SIS stands for ``susceptible,'' ``infectious,'' and ``removed,'' respectively. See Hethcote (1989) and Hethcote (2000) for an 
overview over epidemiological models of infectious diseases.

7 As is standard, we model epidemic dynamics in continuous time. This is not only consistent with the initial formulation of the SIR model (Kermack and McKendrick, 
1927) and as a consequence, most macro-epidemiological frameworks in the literature, but it also avoids complex or even chaotic dynamics that can arise with a 
discrete logistic function (see, e.g., May, 1974).

8 We treat the death rate 𝛿 say as negligible. If we explicitly incorporated 𝛿, then the population would shrink over time by the measure 𝛿𝑦 and the payoff from 
activity, introduced below, would be scaled by 1 − 𝛿𝑦. The programs we analyze subsequently would remain unchanged except that 𝛽 in the law of motion would be 
scaled by 1 − 𝛿 ≈ 1 and total utility by 1 − 𝛿𝑦 ≈ 1.

9 See for example Hethcote (1989) for the case of 𝑔(𝑎) = 𝑦̄ = 𝜔 = 1.
10 The SI model assumes 𝜔= 𝑦̄ = 1.
11 The SIS model assumes 𝑦̄= 1.
12 In Gonzalez-Eiras and Niepelt (2023), we allow for members of the post group to return to the pre group, for instance because infection does not confer permanent 

immunity.



Journal of Economic Dynamics and Control 178 (2025) 105145

5

M. Gonzalez-Eiras and D. Niepelt 

three groups). Susceptible households become infected through contact with currently infected households, remain infectious for a 
random duration, and eventually transition to the removed group.

These dynamics reduce to the law of motion (1) with 𝜔 = 1, when the infected and removed groups are combined into a single 
post group, effectively assuming a fixed relative size of the infected and removed populations.13 This key simplification eliminates 
an endogenous state variable but does not undermine the model’s ability to represent societal costs of infection or death. For these 
purposes, it is sufficient to account for the flow of newly infected individuals from the pre to the post group, and to associate costs 
with this flow, as outlined below.14

The steady state of system (1), 𝑦̄, is exogenous, whereas it is endogenous in the canonical (but not the modified) SIR model. 
However, this difference is less significant than might initially appear. Since we allow for a random arrival of a cure (see below), 
the expected long-run share of the population that avoids infection is endogenous to the chosen activity path, as in the SIR model. 
Furthermore, as shown in appendix A, the endogeneity of the ``herd-immunity'' threshold in the canonical SIR model does not sig

nificantly impact optimal policy choices during the early stages of an epidemic.15 During this initial phase, our framework therefore 
constitutes a useful environment for policy analysis that is not yet technically feasible within the canonical SIR model.16

In addition to incorporating the effect of economic activity on the infection rate, our framework extends the SI, SIS, and SIR models 
by introducing time-dependent dynamics, in addition to the state-dependent ones. With Poisson arrival rate 𝜈, a ``cure arrives''�-

marking the point at which the disease and its associated consequences (described below) disappear, and 𝛽 drops to zero. This cure 
could represent, for instance, medical advancements or the development of a vaccine. The same cure also arrives deterministically at 
a fixed time, 𝑇 , which may be infinite.

2.1.2. Costs of infection

Infections are transitions of households from the pre to the post group. These transitions generate social costs, due to strain on 
the healthcare system, foregone utility, or harm caused by the infection. We express these costs as

𝜓 𝑓 (𝑦, 𝑎), (3)

where 𝜓 > 0 denotes the unit cost. In the extensions discussed in section 6.2, we allow 𝜓 to vary in order to capture effects such 
as learning or congestion. In the former case, unit costs decrease as cumulative case numbers increase. In the latter case, unit costs 
rise with the infection flow, for example, due to healthcare capacity constraints that lead to lower care quality and higher fatality 
rates—creating an incentive to ``flatten the curve.'' In the baseline analysis, we assume 𝜓 is constant.

We emphasize the similarities between the drivers of health costs in SIR based analyses and in our framework: In the former, 
an exogenous share of the infected population dies at each instant, and public health costs are associated with these transitions into 
death. Due to the exogenous death rate, this is equivalent to associating costs with transitions into the infected pool, which evolves 
endogenously. In our model, the public health costs also are associated with the transition into the post pool, and this pool also 
evolves endogenously.

We summarize the epidemiological part of the model as follows:

Assumption 1. A cure arrives with Poisson arrival rate 𝜈 ≥ 0 and deterministically at time 𝑇 , which may be infinite. Admissible 
activity levels are 𝐴 = [𝑎,1] with 0 < 𝑎 < 1. Before a cure arrives the law of motion 𝑓 ∶ [0, 𝑦̄]×𝐴→ℝ+ given in equation (1) determines 
epidemiological dynamics. Function 𝑔 ∶𝐴→ℝ+ is strictly increasing, smooth, and weakly convex. Social costs of infection are given 
by (3).

The lower bound on 𝐴 can be arbitrarily close to zero. Both bounds on 𝐴 are not binding but will simplify proofs.

2.2. Economics

2.2.1. Households

Households have an intertemporal utility function that depends on activity and infection costs. In combination with the law of 
motion (1), these preferences parsimoniously generate the fundamental tradeoff of interest between lives and livelihoods. Households 
discount the future at rate 𝜌.

13 In both the SIR model and our framework, infections are caused by interactions between the susceptible (pre) group and the infectious group. In our model, the 
latter group constitutes a fixed share of the post group. The coefficient 𝛽 absorbs the ratio between infectious and post groups.
14 The law of motion (1) does not explicitly account for deaths. However, the implications for epidemiological dynamics are negligible when death rates are assumed 

to be small, as we do here. See the discussion in footnote 8.
15 A hybrid model augments the modified SIR model with an additional parameter that regulates long-run population shares (Gonzalez-Eiras and Niepelt, 2020c). 

In the law of motion (1), 𝑦̄ serves a similar role: a lower 𝑦̄ implies a larger proportion of the population that remains uninfected.
16 We focus on the model’s predictions in 𝑦 space rather than in the time domain. (Of course, there is a direct mapping between the two.) The 𝑦-space perspective 

provides more insight because 𝑦 rather than time is the key state variable in the model. For our COVID-19 calibration, with a basic reproduction number of 0 = 2.4, 
a conservative lower bound for the initial phase corresponds to a cumulative infection rate 𝑦 of 3.5 percent of the population. Simulation results show that for higher 
values of 0 , the initial phase extends over a larger portion of the state space.
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The benefit of activity is represented by an indirect utility function, 𝑢, which depends on the level of activity and reaches a 
maximum at the first-best activity level, 𝑎⋆ . Without loss of generality, we normalize 𝑢 and 𝑔 such that 𝑎⋆ = 1, 𝑢(𝑎⋆) = 0, and 
𝑔(𝑎⋆) = 1.

Assumption 2. Function 𝑢 ∶𝐴→ℝ is twice differentiable and strictly concave and satisfies ∞ > 𝑢′(𝑎) > 𝑢′(𝑎⋆) = 𝑢′(1) = 0, 𝑢(𝑎⋆) = 0. 
The discount rate 𝜌 ≥ 0; when 𝑇 =∞, then 𝜌+ 𝜈 > 0. Function 𝑔 satisfies 𝑔(𝑎⋆) = 1.

The cost of activity is increased risk of infection, scaled by infection costs. To ensure internal consistency, we require that the 
perceived relationship between individual activity choice and infection risk aligns with the epidemiological environment in which 
individuals operate—namely, the aggregate law of motion for infections (1)�-so that equilibrium behavior reflects rational, forward

looking decision-making. In section 3.2, we describe the mapping between individual activity choice and infection risk and the 
resulting optimization problem of an individual household in decentralized equilibrium. We analyze heterogeneity in section 5.

2.2.2. Government

Policy makers have instruments at their disposal to control economic activity, for instance by imposing social distancing measures, 
closing non-essential businesses, mandating other lockdown measures or, in contrast, stimulating activity. Using these instruments, 
the government faces the same program as a social planner. In section 6.6 we analyze the consequences of instrument restrictions, 
which imply that the government faces a more limited choice set than a social planner.

The government treats households symmetrically. This could reflect that the government has no information about individual 
health status, for example because symptoms do not generate much relevant information about their cause. It could also reflect that 
the government does have such information but chooses to disregard it because conditioning policy on health status would be too 
costly (for reasons the model does not speak to). Note that the government can condition policy on the aggregate state 𝑦 even if it 
does not observe the health status of each individual, at a minimum because knowing 𝑦0 and the law of motion (1) allows to infer 
the aggregate state.

Since the losses from infection are linear in both infection risk and the health costs conditional on contracting the disease, they can 
be summed as total losses. Accordingly, the government’s objective incorporates the summed losses rather than a nonlinear aggregate 
of individual losses. Formally, the government’s program introduced in subsection 3.1 treats all households as bearing an equal share 
of the social costs—regardless of their infection status—which equals one in equilibrium. Moreover, all household types—pre, post, 
and neutral (the latter being unaware of their status)�-are prescribed the same activity level.

The symmetry assumption is a plausible approximation in the context of many epidemics, including the COVID-19 pandemic.17 It 
is clearly less plausible in other cases where the symptoms of an infection are more pronounced or easier to differentiate. To account 
for this possibility, we analyze in section 5 the implications of heterogeneity.

2.3. Functional form assumptions and calibration

To sharpen our results we sometimes impose the preference assumption

𝑢(𝑎) = ln(𝑎) − 𝑎+ 1,

consistent with the normalizations 𝑎⋆ = 1 and 𝑢(𝑎⋆) = 0. Our preferred interpretation is that activity yields strictly concave benefits 
(e.g., from consumption) and linear costs (e.g., from providing effort). In section 6.7 we solve the model under the assumption that 
the benefit function exhibits stronger curvature.

Moreover, we often assume

𝑔(𝑎) = 𝑎𝑛, 𝑛 ∈ [1,2].

This specification of the activity-infection nexus allows for both constant and increasing returns to scale and accounts for the mixed 
epidemiological evidence on the elasticity of infections with respect to activity (Hethcote, 1989).

Assumption 3. Preferences and the activity-infection nexus are given by 𝑢(𝑎) = ln(𝑎) − 𝑎+ 1 and 𝑔(𝑎) = 𝑎𝑛, 𝑛 ∈ [1,2], respectively.

Throughout the paper we use numerical simulations to illustrate some of the results.18 The simulations make use of the functional 
form assumptions described above and are based on parameter values that we calibrate to match properties of the COVID-19 pandemic 
in the United States. Our unit of time is a day and 𝑡 = 0 corresponds to mid March 2020. Accordingly, we set 𝜌 = −ln(0.95)∕365 (five 
percent annual discount rate) and 𝜈 = 1∕(365 ∗ 1.5) (one-and-a-half years expected duration until a substantial part of the population 
is vaccinated or otherwise protected).19

17 Many individuals infected with COVID-19 remained asymptomatic or showed only mild symptoms. When only few tests were administered many infected indi

viduals necessarily behaved like individuals who had not been infected.
18 Mathematica code is available upon request.
19 See, e.g., Alvarez et al. (2021). The probability that a cure arrives before time 𝑡 equals 1−e−𝜈𝑡 ; the expected duration until it arrives thus equals ∫ ∞

𝑡=0 𝑡𝜈e
−𝜈𝑡𝑑𝑡 = 𝜈−1 .
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Table 1
Baseline calibration. See the text and appendix C for 
explanations.

Parameter Value 
𝜌 0.1405 ⋅ 10−3
𝜈 0.1826 ⋅ 10−2
𝑦0 0.1148 ⋅ 10−3
𝛽 0.8346 ⋅ 10−1
𝜔 0.6662
𝑦̄ 0.8786
𝜓 0.2228 ⋅ 103
𝜁 0.8266 (introduced in section 3.2) 

In appendix C we describe in detail how we calibrate the remaining parameters. Based on information about parameter values in 
the canonical SIR model we let 𝑦0 = 0.1148 ⋅ 10−3, 𝛽 = 0.8346 ⋅ 10−1 (corresponding to an infection rate in the SIR model (at regular 
activity level) of 0.1333), 𝜔 = 0.6662, and 𝑦̄= 0.8786. Table 1 summarizes the baseline calibration.

For the effect of activity on infections, 𝑔(𝑎) = 𝑎𝑛, we choose the quadratic specification as a baseline, 𝑛 = 2. We do this for 
two reasons. First, because it is the most widely used assumption in the literature; our choice therefore allows to compare model 
predictions. Second, because the implications of the model for intermediate values of 𝑛, as suggested by epidemiological research 
(Hethcote, 1989), resemble those of the model with 𝑛 = 2 more closely than those with 𝑛 = 1, as we show below.

3. First best and equilibrium

Let 𝑈⋆ ≡ 𝑢(𝑎⋆)∕𝜌 denote the household’s and the government’s values in the absence of infections, when first-best activity is 
chosen permanently. This value is attained once the cure arrives or in the limit when all households have gained immunity, 𝑦 = 𝑦̄. 
Prior to attaining 𝑈⋆, at time 𝑡 < 𝑇 , the state in the programs of the government or a household is given by (𝑦, 𝑑) where 𝑑 ≡ 𝑇 − 𝑡
indicates duration until 𝑇 .20 When 𝑇 =∞ (no deterministic arrival of a cure), the state only includes 𝑦. We proceed using notation 
for the finite-𝑇 case but note how the results change in the infinite-𝑇 case.

3.1. Government program

The government weighs the social costs of reduced economic activity against the benefits of delaying infections and potentially 
avoiding major suffering from the disease before a cure becomes available. As explained earlier, our parsimonious specification 
represents the cost of activity reductions by a lower value of 𝑢(𝑎) and health cost of infections by the term 𝜓𝑓 (𝑦, 𝑎). The government 
knows the aggregate state and the law of motion (1) and uses this information to optimally trade off lives and livelihoods. Since this 
tradeoff is dynamic, the optimal policy solves an optimal control problem. While this control problem is straightforward in principle 
we devote some attention to seemingly ``technical'' aspects such as differentiability of the value function and continuity of the optimal 
policy function, because they play an important role for central properties of the optimal policy, as we show.

An admissible control path from time 0 to time 𝑇 is a measurable function 𝐚 ∶ [0, 𝑇 ]→𝐴. Let  denote the set of such admissible 
paths and let 𝑉 ∶ [0, 𝑦̄] × [0, 𝑇 ]→ℝ denote the government’s value function prior to the arrival of a cure. At time 0 the value function 
satisfies

𝑉 (𝑦0, 𝑇 ) = 𝑃⋆ + sup 
𝐚∈

𝑇

∫
0 

{𝑢(𝑎) −𝜓𝑓 (𝑦, 𝑎)} e−(𝜌+𝜈)𝑡𝑑𝑡 s.t. (1), (4)

where 𝑦 and 𝑎 arguments are evaluated at 𝑦(𝑡;𝐚, 𝑦0) and 𝐚(𝑡), respectively. When 𝑇 =∞ equation (4) holds with 𝑉 (𝑦0, 𝑇 ) replaced 
by 𝑉 (𝑦0).

The first term on the right-hand side of equation (4), 𝑃⋆, depends on parameters including 𝑇 . It represents the expected present 
value of 𝑈⋆ realizations either at time 𝑇 , or after Poisson shocks that occur before time 𝑇 .21 The second, integral term represents the 
probability weighted present value of utility from economic activity net of infection costs before a cure arrives. Note that the upper 
bound on 𝐴 that we imposed in Assumption 1 is not binding: Not only is marginal utility negative for 𝑎 > 1 but higher activity also 
speeds up infections, which is costly because of discounting (Assumptions 1 and 2).

20 Following standard practice, we formulate the law of motion (1) using calendar time, 𝑡, rather than duration, 𝑑. In contrast, we find it more intuitive to use 𝑑
rather than 𝑡 as an argument of the value function. Of course, the two alternatives are intimately connected.
21 The probability of no Poisson shock up to time 𝑇 equals e−𝜈𝑇 and the probability density of a first shock after duration 𝑡 < 𝑇 equals 𝜈e−𝜈𝑡 . It follows that 𝑃⋆ is 

given by

𝑈⋆ ⋅

⎧⎪⎨⎪⎩
e−𝜈𝑇 e−𝜌𝑇 +

𝑇

∫
0 
𝜈e−𝜈𝑡e−𝜌𝑡𝑑𝑡

⎫⎪⎬⎪⎭
=𝑈⋆

{
e−(𝜌+𝜈)𝑇 + 𝜈

𝜌+ 𝜈
(1 − e−(𝜌+𝜈)𝑇 )

}
.



Journal of Economic Dynamics and Control 178 (2025) 105145

8

M. Gonzalez-Eiras and D. Niepelt 

As a preliminary step to establish differentiability of the value function and continuity of the policy function, we show that 
the Dynamic Programming Principle holds and 𝑉 is the unique viscosity solution of the Hamilton-Jacobi-Bellman (HJB) equation 
associated with the optimization problem. Let 𝐷𝑦𝑉 denote the gradient of the value function with respect to 𝑦 (it is unknown at this 
point whether the derivative, 𝑉𝑦, exists) and 𝑉𝑑 the partial derivative with respect to duration.22

Lemma 1. Under Assumptions 1 and 2 the Dynamic Programming Principle applies and 𝑉 is the unique bounded viscosity solution of the 
associated HJB equation. When 𝑇 <∞, the HJB equation reads

𝜌𝑉 (𝑦, 𝑑) = sup 
𝑎∈𝐴

{𝑢(𝑎) −𝜓𝑓 (𝑦, 𝑎) + 𝑓 (𝑦, 𝑎)𝐷𝑦𝑉 (𝑦, 𝑑)} − 𝑉𝑑 (𝑦, 𝑑) + 𝜈(𝑈⋆ − 𝑉 (𝑦, 𝑑)) s.t. (1),

with boundary condition 𝑉 (𝑦,0) =𝑈⋆; moreover, 𝑉 (𝑦, 𝑑) < 𝑈⋆ for all (𝑦, 𝑑) ∈ (0, 𝑦̄) × (0, 𝑇 ] and 𝑉 is Lipschitz continuous. When 𝑇 =∞, 
the same HJB equation holds with 𝑉 (𝑦, 𝑑) replaced by 𝑉 (𝑦) and boundary conditions 𝑉 (0) = 𝑉 (𝑦̄) = 𝑈⋆; moreover, 𝑉 (𝑦) < 𝑈⋆ for all 
𝑦 ∈ (0, 𝑦̄) and 𝑉 is Hölder continuous with exponent min[ 𝜌+𝜈 

𝛽𝑦̄𝜓max[𝜔,1] ,1].

In appendix D we briefly review the concept of viscosity solutions for non-linear partial differential equations (Crandall and Lions, 
1983). Interpreting 𝑉 (𝑦, 𝑑) as the value of an asset that the government optimally manages, the left-hand side of the HJB equation 
represents the ``required return'' on that asset, due to time discounting. The right-hand side captures the two sources of return, the 
“dividend'' and ``capital gains'' components. The dividend component stems from the immediate utility flow, which equals the indirect 
utility from activity, net of infection costs, 𝑢(𝑎)−𝜓𝑓 (𝑦, 𝑎). The capital gains come from the evolution of the state or the sudden arrival 
of a cure. A change of 𝑦 (given by 𝑓 (𝑦, 𝑎)) induces the change of value 𝐷𝑦𝑉 (𝑦, 𝑑), a reduction in 𝑑 the gain −𝑉𝑑 (𝑦, 𝑑), and the arrival 
of the cure triggers the gain 𝑈⋆ − 𝑉 (𝑦, 𝑑).23

Suppose that 𝑇 is finite and consider a state (𝑦, 𝑑) at which 𝑉 is differentiable such that the derivative 𝑉𝑦(𝑦, 𝑑) replaces the 
gradient 𝐷𝑦𝑉 (𝑦, 𝑑) (see appendix D). The corresponding optimal control, 𝑎(𝑦, 𝑑), then solves

𝑎(𝑦, 𝑑) = argmax
𝑎∈𝐴 

{
𝑢(𝑎) + 𝑓 (𝑦, 𝑎)(𝑉𝑦(𝑦, 𝑑) −𝜓)

}
s.t. (1)

or

𝑢′(𝑎(𝑦, 𝑑)) = 𝑔′(𝑎(𝑦, 𝑑))𝑓 (𝑦, 𝑎(𝑦, 𝑑))
𝑔(𝑎(𝑦, 𝑑)) 

(
𝜓 − 𝑉𝑦(𝑦, 𝑑)

)
s.t. (1). (5)

Equation (5) represents the two opposing forces that shape the government’s choice of activity level: economic needs and public 
health concerns. The direct effect of economic costs appears on the left-hand side, while public health costs are reflected in the first 
term on the right-hand side. The second term on the right-hand side captures the change in the present value of future economic and 
public health losses. Note that faster infections cause higher health costs, captured by the 𝜓 term, and change the endogenous state, 
bringing the epidemic closer to its end.

When 𝑇 is infinite, a parallel condition determines the optimal control 𝑎(𝑦). In either case, the government trades off losses from 
reduced activity and benefits of slowing down infections and changing the continuation value. Under the baseline functional form 
Assumption 3, condition (5) reduces to the policy function24

𝑎(𝑦, 𝑑) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 
1+𝛽𝑦̄𝑦

(
1−

(
𝑦

𝑦̄

)𝜔)
(𝜓−𝑉𝑦(𝑦,𝑑))

if 𝑛 = 1

−1+
√

1+8𝛽𝑦̄𝑦
(
1−

(
𝑦

𝑦̄

)𝜔)
(𝜓−𝑉𝑦(𝑦,𝑑))

4𝛽𝑦̄𝑦
(
1−

(
𝑦

𝑦̄

)𝜔)
(𝜓−𝑉𝑦(𝑦,𝑑)) 

if 𝑛 = 2

. (6)

Note that both the 𝑉𝑦(𝑦, 𝑑) term and 𝜔 ≠ 1 introduce asymmetry in the policy function.

As stated before, conditions (5) and (6) only hold at points where 𝑉 is differentiable. The following proposition establishes that 
this is the case throughout the state space.

Proposition 1. Suppose that Assumptions 1 and 2 hold. The policy function is continuous, the value function is differentiable, and the two 
functions satisfy

(𝜌+ 𝜈)𝑉 (𝑦, 𝑑) = 𝑢(𝑎(𝑦, 𝑑)) − 𝑢′(𝑎(𝑦, 𝑑)) 𝑔(𝑎(𝑦, 𝑑)) 
𝑔′(𝑎(𝑦, 𝑑))

+ 𝜈𝑈⋆. (7)

22 Recall that a continuous function ℎ on the domain 𝑋 ⊂ ℝ is Lipschitz continuous if there exists a real constant 𝐿 such that |ℎ(𝑥1) − ℎ(𝑥2)| ≤ 𝐿|𝑥1 − 𝑥2| for all 
𝑥1, 𝑥2 ∈𝑋. It is Hölder continuous with exponent 𝑘 > 0 if there exists a constant 𝐶 ≥ 0 such that |ℎ(𝑥1) − ℎ(𝑥2)| ≤ 𝐶|𝑥1 − 𝑥2|𝑘 for all 𝑥1, 𝑥2 ∈𝑋. When 𝑘 < 1 Hölder 
continuity is a strictly weaker requirement.
23 See, for example, Acemoglu (2009, ch. 7) for the interpretation of the HJB equation in terms of dividends and capital gains.
24 For 𝑛= 2 the first-order condition has two solutions. We report the unique solution in (0,1].



Journal of Economic Dynamics and Control 178 (2025) 105145

9

M. Gonzalez-Eiras and D. Niepelt 

Fig. 2. Value function, activity level, infections, and dividend in the government’s program. 

Moreover, lim𝑦↓0 𝑎(𝑦, 𝑑) = 𝑎⋆. When 𝑇 = ∞, these results hold for 𝑉 (𝑦) and 𝑎(𝑦). A change of any parameter other than 𝜌, 𝜈, or 𝑇 that 
increases 𝑉 (𝑦, 𝑑) also increases 𝑎(𝑦, 𝑑).

Continuity of the policy function and differentiability of the value function over the entire state space are generally hard to prove, 
see Calvia et al. (2023). We establish these properties by exploiting the tight connection between the law of motion and infection 
costs as well as the fact that the value function is differentiable almost everywhere. According to the proposition, the government’s 
value function is completely determined by 𝑢, 𝑔 and the policy function. Under functional form Assumption 3, the proposition implies 
(𝜌+ 𝜈)𝑉 (𝑦, 𝑑) = ln(𝑎(𝑦, 𝑑)) + (1 − 𝑎(𝑦, 𝑑))(1 − 𝑛−1); for 𝑛 = 1 the government’s value function thus equals the scaled logarithm of the 
policy function.

Focus for now on the time autonomous case (𝑇 = ∞). Since 𝑉 (0) = 𝑉 (𝑦̄) = 𝑈⋆ and 𝑉 (𝑦) < 𝑈⋆ for all 𝑦 ∈ (0, 𝑦̄), there exists a 
𝑦min ∈ (0, 𝑦̄) at which 𝑉 attains its global minimum. This follows directly from the continuity of the value function. In appendix E 
we show that 𝑉 has a unique minimum, is strictly convex over the domain [𝑦min , 𝑦̄], and 𝑉 ′(𝑦) < 𝜓 . To numerically solve for the 
government’s HJB equation, we impose condition (6) as well as the boundary condition 𝑉 (𝑦̄) =𝑈⋆ and use finite difference methods 
in Mathematica, see appendix C.3. We use a parallel strategy to characterize the decentralized equilibrium discussed below.

Fig. 2 illustrates our results.25 The figure is drawn for the baseline calibration introduced earlier and under the assumption that 
𝑔(𝑎) = 𝑎2. In the quantitative analysis in section 6, we will conduct various robustness checks and consider alternative specifications 
and scenarios.

The results in Fig. 2 are intuitive. Focus first on the optimal path of infections displayed in the bottom left panel. Infections follow 
a hump-shaped pattern—consistent with standard epidemiological predictions—because the generalized logistic function governing 
the evolution of 𝑦 is S-shaped, making infection flows (i.e., changes in 𝑦) largest at intermediate values of 𝑦. The endogenous variation 
in 𝑎(𝑦) controlled by the government does not offset this fundamental force. The costs of infection thus are hump shaped as well, and 
this affects the dividend component in the government’s HJB equation, 𝑢(𝑎(𝑦)) −𝜓𝑓 (𝑦, 𝑎(𝑦)), which is illustrated in the bottom right 
panel of the figure: Higher infections are associated with more negative dividends.26

The capital gains component, 𝑓 (𝑦, 𝑎(𝑦))𝑉 ′(𝑦)+𝜈(𝑈⋆−𝑉 (𝑦)), is the difference between the required return, 𝜌𝑉 (𝑦), and the dividend 
component. Since the slope of 𝑉 (displayed in the top left panel) is rather flat for 𝑦 > 𝑦min, the first part of the capital gains component 
is positive and hump-shaped in this domain, while the second part is positive and decreasing. The first part reflects the economy’s 
nearing the end of the tunnel: Infections today means fewer infections in the future, which is beneficial because fewer future infections 
are associated with a reduction in the present value of future health and inactivity costs. The second part of the capital gains component 
captures the benefit of the potential arrival of a cure, which is diminishing as the epidemic progresses.

For 𝑦 ≤ 𝑦min, the first part of the capital gains component is negative: While the economy moves toward the end of the tunnel, it 
still has to navigate through its darkest part. This explains why the value function is falling so steeply. The second part of the capital 
gains (which is not under the government’s control and thus will not directly shape optimal policy) increases because the benefit of 
the potential arrival of a cure reaches its maximum when the value of 𝑉 is minimal.

25 It is understood that these relationships apply before a cure arrives. Once a cure has arrived 𝑎 optimally equals 𝑎⋆ even if 𝑦 < 𝑦̄.
26 Dividends are negative because 𝑢(𝑎⋆) is normalized to zero.
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The optimal activity path displayed in the top right panel reflects the tradeoff between lives and livelihoods described after 
equation (5). The state 𝑦 affects optimal activity through the difference between infection costs and the first part of the capital gains 
component, 𝑓 (𝑦, 𝑎(𝑦))(𝜓−𝑉 ′(𝑦)).27 Via its effect on 𝑓 , the S-shaped infection path strengthens the motive to reduce 𝑎 for intermediate 
values of 𝑦, while the term 𝜓 −𝑉 ′(𝑦) is very large for small values of 𝑦 before flattening out. In combination, the two effects lead the 
government to curtail activity strongly in the early phase of the epidemic and increasingly less so later on.28 Formally, the relation 
between 𝑉 and 𝑎 established in Proposition 1 implies that optimal activity bottoms out at the same time as 𝑉 , at 𝑦min, and exhibits 
very similar skewness.

It is instructive to consider two extreme cases in this context. When 𝜌 + 𝜈 converges to zero such that the government does not 
discount the future, the derivative of the value function converges to 𝜓 for all 𝑦 > 0. As a consequence, the optimal activity level 
approaches 𝑎⋆ for all 𝑦 > 0 (see equation (5)). Intuitively, when there is no hope for a cure and delaying infections does not help, 
then there is no point in trying to manage the time profile of infections, and thus in reducing activity.29

In contrast, when 𝜌 + 𝜈 increases such that the government attaches less weight to the future or considers the arrival of a cure 
more likely, the value function flattens and approaches zero. In the limit, there are no capital gains, only current infection costs shape 
public health concerns, and the government suppresses activity more strongly than without discounting.

Most of the literature assumes 𝑔(𝑎) = 𝑎𝑛 with 𝑛 = 1 or 𝑛 = 2 because the numerical solution strategy described above or similar 
standard strategies run into problems when 𝑛 ∈ (1,2). In contrast, we can easily solve the model for such intermediate values of 𝑛: 
Exploiting Proposition 1 in combination with the optimality condition (6), we can directly solve a differential equation in 𝑎(𝑦) with 
boundary condition 𝑎(𝑦̄) = 1. We exploit this possibility in subsection 6.3.

3.2. Decentralized equilibrium

Unlike the government, an individual household takes the evolution of the aggregate state 𝑦 as given. It optimizes subject to this 
aggregate constraint as well as the perceived nexus between the individual activity level and infection risk. To discipline our analysis, 
we impose that this perceived nexus is consistent with the epidemiological environment the individual actually inhabits, and thus 
with the economy-wide law of motion (1), allowing us to interpret equilibrium choices as rational, forward looking behavior.

Specifically, we assume that the infection cost function perceived by an individual household differs twofold from the social cost 
function faced by the government. On the one hand, the individual distinguishes between its own and the aggregate activity choice. 
Following standard practice (e.g., Farboodi et al. (2021) or Garibaldi et al. (2024)), we use a matching function to describe how this 
activity pair maps into private infection risk. On the other hand, a household may internalize only a share of the infection costs, for 
instance because of health insurance and non-contractable precautionary behavior.

We postulate a homogeneous of degree 𝑛 ≥ 1 matching function, 𝑚, that maps the household’s individual activity level 𝑎𝑖 as well 
as aggregate activity 𝑎 into infections conditional on 𝑦. Consistency requires that 𝑔(𝑎) = 𝑚(𝑎, 𝑎). A common matching function that 
satisfies our assumptions (and that we will use) is given by 𝑚(𝑎𝑖, 𝑎) = 𝑎𝑥𝑖 𝑎

𝑛−𝑥 with 𝑥 > 0; when 𝑥= 1 this yields 𝑚(𝑎𝑖, 𝑎) = (𝑎𝑖∕𝑎)𝑎𝑛 such 
that an individual household perceives a linear effect of its activity choice.30 Furthermore, we assume that a household internalizes 
the marginal share 𝜁 ∈ [0,1] of infection costs but ends up bearing the full social costs in equilibrium. Formally, we impose the 
following assumption31:

Assumption 4. Households perceive the individual health cost function to be given by 𝜓𝑓 (𝑦, 𝑎)∕𝑔(𝑎) multiplied by the factor 
𝜁𝑚(𝑎𝑖, 𝑎) + (1 − 𝜁)𝑔(𝑎), 𝜁 ∈ [0,1], where 𝑚 is homogenous of degree 𝑛 and 𝑚(𝑎, 𝑎) = 𝑔(𝑎).

When the internalization rate 𝜁 equals zero, households perceive the same cost function as the government (recall (3)), but since 
they distinguish between their own activity choice and the aggregate one, households take no precautions. When the internalization 
rate exceeds zero, in contrast, households perceive the marginal effect 𝜁(𝜕𝑚(𝑎𝑖, 𝑎)∕𝜕𝑎𝑖)𝜓𝑓 (𝑦, 𝑎)∕𝑔(𝑎) of their activity on their own 
health costs; nevertheless, they bear the full costs in equilibrium, since (𝜁𝑚(𝑎, 𝑎) + (1 − 𝜁)𝑔(𝑎))𝜓𝑓 (𝑦, 𝑎)∕𝑔(𝑎) = 𝜓𝑓 (𝑦, 𝑎).

We emphasize that this specification is not only consistent with common matching function specifications, as argued above, but 
also with rational, forward looking behavior. To see this, note that an individual that only knows the aggregate state considers herself 
to be a member of the pre group—and thus, at risk of infection—with probability 𝑦̄−𝑦. Conditional on being in the pre group, in turn, 
the risk of meeting an infectious individual is 𝑦. Finally, conditional on an infectious ``match,'' the risk of actually contracting the 
disease is a function of the activity levels of the two parties, 𝑚(𝑎𝑖, 𝑎).32 In what follows, we augment the functional form Assumption 3
to include the specification 𝑚(𝑎𝑖, 𝑎) =

𝑎𝑖

𝑎 𝑎
𝑛, i.e., we set 𝑥 = 1.

To calibrate 𝜁 and the social cost parameter 𝜓 , we use estimates of expected health care and mortality costs as well as households’ 
willingness to pay to eliminate COVID-19 induced mortality risk. We assume that households fully internalize mortality risk but not 
the social costs of health care implying a social cost parameter 𝜓 = 222.8 and an internalization rate 𝜁 = 0.8266 (see appendix C).33

27 The second part of the capital gains component does not interact with activity.
28 The initial fall in optimal activity is barely visible in Fig. 2. But recall from Proposition 1 that lim𝑦↓0 𝑎(𝑦) = 𝑎⋆ and policy is continuous.
29 Recall that 𝑦̄ is exogenous.
30 This formulation is consistent, e.g., with assumptions in Farboodi et al. (2021) or Garibaldi et al. (2024).
31 This can be relaxed, see Gonzalez-Eiras and Niepelt (2020b).
32 If the individual is not in the pre group, it faces no risk. The generalized logistic specification replaces the 𝑦 in the 𝑦̄− 𝑦 term with a geometric average.
33 We rely on parameter estimates by Atkeson (2020), Bartsch et al. (2020), Ferguson et al. (2020), Hall et al. (2020), and Menachemi et al. (2020).
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Since an individual household (correctly) perceives the aggregate state to develop independently of its own choices, the household 
solves a static problem, trading off net economic activity benefits and expected infection costs. The household’s choice solves

𝑎𝑖(𝑦, 𝑑) = argmax
𝛼∈𝐴 𝑢(𝛼) − {𝜁𝑚(𝛼, 𝑎(𝑦, 𝑑)) + (1 − 𝜁)𝑔(𝑎(𝑦, 𝑑))} 𝜓 𝑓 (𝑦, 𝑎(𝑦, 𝑑))

𝑔(𝑎(𝑦, 𝑑)) 
,

where 𝑎(𝑦, 𝑑) denotes the aggregate activity choice, which the household takes as given. In equilibrium, individual and aggregate 
choices coincide and thus satisfy

𝑢′(𝑎(𝑦, 𝑑)) = 𝜁 𝜕𝑚(𝛼, 𝑎(𝑦, 𝑑))
𝜕𝛼 

𝜓𝛽𝑦𝑦̄

(
1 −

(
𝑦

𝑦̄

)𝜔)
. (8)

Any fixed point 𝑎(𝑦, 𝑑) ∈𝐴 that solves this equation constitutes an equilibrium choice. This choice has several noteworthy prop

erties. First, unlike in the government’s program, equilibrium activity is symmetric around 𝑦̄∕2 when 𝜔 = 1. This reflects the absence 
of capital gains in the household’s program. Second, conditional on 𝑦, equilibrium activity is independent of time even when 𝑇 <∞, 
for similar reasons. Third, as is straightforward to show, in our benchmark specification (under Assumptions 3 and 4) equation (8)

has a unique solution in ℝ+ and this solution lies in the interval (0,1).34 For 𝑛 = 1,2 this solution is given by

𝑎(𝑦, 𝑑) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 
1+𝛽𝑦̄𝑦

(
1−

(
𝑦

𝑦̄

)𝜔)
𝜁𝜓

if 𝑛 = 1

−1+
√

1+4𝛽𝑦̄𝑦
(
1−

(
𝑦

𝑦̄

)𝜔)
𝜁𝜓

2𝛽𝑦̄𝑦
(
1−

(
𝑦

𝑦̄

)𝜔)
𝜁𝜓 

if 𝑛 = 2

. (9)

An equilibrium activity function consistent with (8) and the law of motion (1) jointly induce equilibrium infection dynamics. They 
determine the equilibrium value function prior to the arrival of a cure, which we denote by 𝑈 (𝑦, 𝑑). Smoothness of 𝑢 and 𝑔 imply 
that activity is a smooth function of the state as well, and this implies that 𝑈 is differentiable.

4. Externalities, lockdowns, and inverse lockdowns

Next, we turn to the externalities that arise because households fail to fully internalize the societal consequences of their actions. 
Subtracting the right-hand side of the planner’s first-order condition (5) from the right-hand side of the individual’s optimality 
condition (8) and evaluating terms at a common activity level yields (𝑎, 𝑦) +(𝑎, 𝑦, 𝑡) with

(𝑎, 𝑦) ≡ 𝜓𝑓 (𝑦, 𝑎)
(
𝜁

𝑎 
− 𝑔′(𝑎)
𝑔(𝑎) 

)
,

(𝑎, 𝑦, 𝑡) ≡ 𝑓 (𝑦, 𝑎)𝑔′(𝑎)
𝑔(𝑎) 

𝑉𝑦(𝑦, 𝑡).

We refer to (𝑎, 𝑦) as the ``static'' externality and to (𝑎, 𝑦, 𝑡) as the ``dynamic'' externality.

The static externality arises because households do not fully internalize the contemporaneous costs of infection. It has two sources: 
First, if 𝜁 < 1, a household shifts the share 1− 𝜁 of the costs of its own infection onto society. Accordingly, it (correctly) perceives the 
private marginal cost of infection to be reduced by the factor 1 − 𝜁 . Second, if 𝑔 is strictly convex, the household’s perceived linear 
private activity-infection nexus contrasts with the non-linear, convex nexus at the aggregate level (recall the discussion preceding 
Assumption 4). Intuitively, aggregate infections exhibit increasing returns to scale with respect to (symmetric) activity in this case, 
which the individual household (correctly) does not perceive. Formally, with 𝑔(𝑎) = 𝑎𝑛, the static externality is proportional to 
(𝜁∕𝑛− 1) and thus strictly negative when 𝜁 < 1 or 𝑛 > 1. We analyze the quantitative role of 𝑛 in subsection 6.3.

The dynamic externality reflects the intertemporal wedge between private and social marginal rates of substitution. Since in

dividual households (correctly) perceive their activity choice to have no effect on the aggregate state, which is a key statistic for 
continuation welfare, and because they behave accordingly, their choices fail to internalize the consequences for the continuation 
value. Note that both the static and the dynamic externality are proportional to infections, 𝑓 (𝑦, 𝑎), because infection flows determine 
the immediate costs and change the state variable, which in turn affects the continuation value. Note also that the dynamic externality 
is positive, unlike the static one.

Fig. 3 illustrates the consequences of the externalities. As in Fig. 2, we focus on the time autonomous case and let 𝑛 = 2; as 
discussed previously, we calibrate 𝜁 = 0.8266. The solid lines in the figure represent the outcomes implemented by the government 
and correspond to the schedules in Fig. 2; the dashed lines represent the equilibrium outcomes.

Not surprisingly, the presence of externalities reduces the equilibrium value below the value under the government’s optimal 
policy. For the same reason as in the government’s problem (the worst part of the epidemic is still to come), the equilibrium value 
function falls steeply when 𝑦 is very small. More interestingly, the activity levels displayed in the right panel differ markedly: Initially, 

34 By letting 𝑎 be sufficiently small we can thus guarantee existence of equilibrium.
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Fig. 3. Value function and activity level in the government’s program (solid) and in equilibrium (dashed). 

the government chooses a lower activity level than in equilibrium, but eventually the opposite holds true—households behave more 
prudently than socially optimal.

The driving force underlying households’ excessive caution is the capital gains component (specifically its first, activity dependent 
part), which only the government internalizes and which is strictly positive for 𝑦 > 𝑦min. When this component is sufficiently strong 
to compensate for the negative static externality (due to 𝜁 < 𝑛) then the equilibrium activity level falls short of the level chosen by 
the government.

We refer to ``lockdowns'' or ``inverse lockdowns,'' respectively, as situations in which the government wishes to depress or stimulate 
economic activity relative to the equilibrium outcome. Lockdown measures may include, for instance, stay-at-home-orders, social 
distancing rules, business closures, or school closures, while inverse lockdowns may, e.g., take the form of stimulus measures such as 
monetary easing, temporary sales tax reductions, subsidies, or a ``return-to-work bonus.'' From the preceding analysis, we know that 
the static and dynamic externalities require a lockdown when 𝜓(𝜁∕𝑛 − 1) + 𝑉𝑦(𝑦, 𝑡) < 0, and an inverse lockdown when the reverse 
inequality holds (assuming 𝑔(𝑎) = 𝑎𝑛).35

Let 𝑦𝑐 denote the smallest value of 𝑦 (if it exists) at which the total externality equals zero, 𝜓(𝜁∕𝑛−1)+𝑉𝑦(𝑦𝑐, 𝑡) = 0. The following 
proposition establishes that the optimal policy involves an immediate lockdown period followed by at most one inverse lockdown 
period:

Proposition 2. Under Assumptions 1 and 4 and if 𝑔(𝑎) = 𝑎𝑛 and 𝜁 ≤ 𝑛, lockdowns occur as follows:

i. Starting from small 𝑦, the government immediately imposes a lockdown;

ii. under Assumption 2 and if 𝑇 = ∞, 𝑔(𝑎⋆)𝛽𝑦̄𝜔 
𝜌+𝜈+𝑔(𝑎⋆)𝛽𝑦̄𝜔 > 1 − 𝜁∕𝑛, the government relaxes the lockdown at the unique 𝑦𝑐 and immediately 

imposes an inverse lockdown.

The first part of Proposition 2 is consistent with the fact that during the COVID-19 pandemic many governments imposed lockdown 
measures early on. The second part appears more surprising. It implies that, under a parametric condition, the dynamic externality 
eventually dominates the static one, leading the government to accelerate infections in order to reach the end of the tunnel more 
quickly.

Again, this implication is consistent with various stimulus measures during the COVID-19 pandemic, such as temporary tax 
reductions and employment or consumption subsidies. Our reversal result triggers the question how policy should optimally be 
conducted when the government cannot impose an inverse lockdown. We analyze this question in section 6.6, where we study the 
effect of constraints on the government’s choice set.

Note that the basic intuition underlying the reversal result is very general: Since an epidemic generates costs, the value during the 
transition is lower than when the transition is completed. At some point, society thus experiences capital gains, reflecting the change 
of an aggregate state variable (or multiple such variables). Since households take the evolution of the state as given, the capital gains 
are not internalized in equilibrium. As long as the capital gains are sufficiently large to outweigh negative static externalities, the 
reversal result thus follows.

Our results on static and dynamic externalities as well as lockdowns and inverse lockdowns relate to work by Rachel (2022) and 
Garibaldi et al. (2024). Rachel (2022) analyzes a setting with two possible activity levels and emphasizes the externality due to low 
activity choices by susceptible individuals. Garibaldi et al. (2024) employ a simplified SIR setting in discrete time.36 Our results 
differ along several dimensions. We find that dynamic externalities are strictly positive towards the end of the epidemic, and we 
show that static externalities may be present even with 𝑛 = 1, because 𝜁 < 1 also drives a wedge between private and social marginal 

35 Note that the parameter 𝜈 does not directly enter the condition for an (inverse) lockdown. It matters indirectly, however, because it shapes the value function and 
thus its derivative.
36 Since Garibaldi et al. (2024) consider two states (the masses of infected and susceptible households) they talk about two dynamic externalities. They also discuss 

congestion externalities, which our continuous time specification classifies as static.
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health costs.37 Moreover, we compare optimum and equilibrium activity levels in state space in order not to disguise fundamental 
differences in economic incentives.38

5. Testing and heterogeneity

A common complement to lockdowns are comprehensive test, trace, and quarantine policies with the objective to isolate infectious 
persons and break chains of infection. With slight modifications, our framework can speak to such policies.39

We assume that the intensity of testing is linked to new infections because it correlates with activity: An individual with higher 
activity is tested more often. There are several natural interpretations of this correlation, including that more intense testing requires 
more activity, or that more active individuals choose to test more often (or are required by government to do so), as is typically the 
case. Rather than modeling the resulting link between testing and infections, we impose it in reduced form.40

Suppose, then, that the test policy identifies new post individuals with conditional probability 𝜎. Share 𝜎 of individuals in the post 
group thus know about their infection status—they are ``aware''—and this status is common knowledge. Testing may also reduce the 
effective infection rate from 𝛽 to 𝛽 = (1− 𝜅𝜎)𝛽, where 0 ≤ 𝜅 ≤ 1, for instance because of quarantine measures in connection with the 
tests.41 In this environment, it is optimal for the government to not differentiate the level of activity between aware and non-aware 
households.42 The law of motion thus is unchanged compared to (1) except for the modified effective infection rate, 𝛽 , and the same 
holds true for the government’s program and first-order condition. Under the functional form Assumption 3, the optimal activity level 
satisfies condition (6), except that 𝛽 is replaced by 𝛽.

Turning to laissez faire, aware households choose activity level 𝑎⋆ as they know from their test results that they no longer face 
infection risk. The average activity level in the economy thus is 𝑎̄(𝑦) ≡ 𝜎𝑦𝑎⋆ + (1 − 𝜎𝑦)𝑎(𝑦), and the law of motion changes to43

𝑑𝑦

𝑑𝑡 
= 𝑓 (𝑦, 𝑎(𝑦)) ≡ 𝑔(𝑎̄(𝑦))𝛽𝑦̄𝑦

(
1 −

(
𝑦

𝑦̄

)𝜔)
. (10)

This has two consequences for the program of unaware households, whose value function we denote by 𝑈 (𝑦). First, these households 
face higher infection risk because 𝑎̄(𝑦) > 𝑎(𝑦) enters the law of motion (10). But second, they anticipate the possibility of a private 
capital gain, 𝑈⋆ −𝑈 (𝑦), from being infected and receiving a positive test result with the consequence of being released in the aware 
pool.

Formally, under Assumptions 3 and 4, unaware households solve

max
𝑎𝑖
𝑢(𝑎𝑖) +

𝑎𝑖

𝑎(𝑦)
𝑓 (𝑦, 𝑎(𝑦))

(
−𝜁𝜓 + 𝜎(𝑈⋆ −𝑈 (𝑦))

)
s.t. (10),

which yields the first-order condition

𝑢′(𝑎𝑖) =
𝜁𝜓 − 𝜎(𝑈⋆ −𝑈 (𝑦))

𝑎(𝑦) 
𝑔(𝑎̄(𝑦))𝛽𝑦̄𝑦

(
1 −

(
𝑦

𝑦̄

)𝜔)
.

Imposing functional form Assumption 3, 𝑎⋆ = 1, and the equilibrium requirement 𝑎𝑖 = 𝑎(𝑦), we thus find

𝑎(𝑦) =
⎧⎪⎨⎪⎩

1−Σ(𝑦)Θ(𝑦) 
1+Θ(𝑦)(1−Σ(𝑦)) if 𝑛 = 1

−1−2Θ(𝑦)Σ(𝑦)(1−Σ(𝑦))+
√
1+4Θ(𝑦)(1−Σ(𝑦))

2Θ(𝑦)(1−Σ(𝑦))2 if 𝑛 = 2
,

where we let Θ(𝑦) ≡ (𝜁𝜓 − 𝜎(𝑈⋆ −𝑈 (𝑦)))𝛽𝑦̄𝑦
(
1 − (𝑦∕𝑦̄)𝜔

)
and Σ(𝑦) ≡ 𝜎𝑦.

Note that the static and dynamic externalities encountered in the baseline model continue to be present. But information about 
infection status introduces a third effect, which runs counter to the dynamic externality: The capital gains that households experience 
when transitioning from the unaware to the aware pool parallels the social welfare gain due to increased immunity, 𝑉 ′(𝑦), in the 

37 In Garibaldi et al. (2024) static externalities disappear when the health consequences of contacts between infectious and susceptible households exhibit constant 
returns to scale.
38 Garibaldi et al. (2024) interpret some of their results by comparing optimum and equilibrium activity levels in time space (see, e.g., the discussion of their figure 

2 on p. 30). As mentioned earlier, such comparisons disguise differences in incentives that derive from the epidemiological state rather than time.
39 Quarantine measures also help to allocate resources more efficiently by targeting interventions. Our model abstracts from targeting and assumes that test, trace, 

and quarantine policies have zero (or some exogenous) costs.
40 More intense testing might require activity because individuals have to go to testing sites or purchase tests. In contrast, Alvarez et al. (2021) and Piguillem and 

Shi (2022) assume that testing is independent of activity.
41 In Gonzalez-Eiras and Niepelt (2020b) and Gonzalez-Eiras and Niepelt (2023), we allow for permanent separation between the infectious group and the rest of 

the population. Fetzer and Graeber (2021) analyze the effectiveness of a UK test-and-trace regime, finding that the policy significantly lowered infection rates.
42 Suppose the activity level 𝐴 of aware households exceeds the level 𝑎 of unaware households, such that 𝑎̄ = (𝜎𝑦𝐴+ (1 − 𝜎𝑦)𝑎) > 𝑎. Relative to a common activity 

level 𝑎, this yields the gain 𝜎𝑦(𝑢(𝐴) − 𝑢(𝑎)) ≤ 𝜎𝑦𝑢′(𝑎)(𝐴 − 𝑎) (due to concavity of 𝑢) and the cost (𝜓 − 𝑉 ′(𝑦))(𝑔(𝑎̄) − 𝑔(𝑎))𝛽𝑦̄𝑦
(
1 − (𝑦∕𝑦̄)𝜔

) ≥ (𝜓 − 𝑉 ′(𝑦))𝑔′(𝑎)(𝐴 −
𝑎)𝜎𝑦𝛽𝑦̄𝑦

(
1 − (𝑦∕𝑦̄)𝜔

)
(due to weak convexity of 𝑔). Since the first-order condition for a common activity level implies 𝑢′(𝑎) = (𝜓 − 𝑉 ′(𝑦))𝑔′(𝑎)𝛽𝑦̄𝑦

(
1 − (𝑦∕𝑦̄)𝜔

)
, the 

cost of a discriminatory policy weakly exceeds the gain. The reverse argument also rules out 𝐴< 𝑎 as an optimum.
43 Unlike in the government program, the effective infection rate 𝛽 is unaffected because aware households do not have incentives to quarantine.
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government’s optimality condition. This new effect as well as the changed effective infection rate in the government program imply 
modified expressions for the static and dynamic externalities, respectively:

(𝑎, 𝑦) = 𝛽𝑦̄𝑦
(
1 −

(
𝑦

𝑦̄

)𝜔)
𝜓

[
𝜁
𝑔(𝑎̄)
𝑎 

− (1 − 𝜅𝜎)𝑔′(𝑎)
]
,

(𝑎, 𝑦) = 𝛽𝑦̄𝑦
(
1 −

(
𝑦

𝑦̄

)𝜔)[
(1 − 𝜅𝜎)𝑔′(𝑎)𝑉 ′(𝑦) − 𝜎 𝑈

⋆ −𝑈 (𝑦)
𝑎 

𝑔(𝑎̄)
]
.

Compared to the baseline model, the static externality is less negative (and might be positive).44 Likewise, the dynamic externality 
is less positive. In general, the effect of testing on the critical threshold 𝑦𝑐 therefore is ambiguous.

The following proposition characterizes the effects of testing:

Proposition 3. Under Assumptions 1 and 4 and if 𝑇 =∞, 𝑔(𝑎) = 𝑎𝑛, and 𝜁 ≤ 𝑛,
i. The government’s value function and optimal activity are increasing in testing effectiveness, 𝜎.

ii. For 𝑦 ↓ 0, equilibrium activity is increasing in testing effectiveness.

The result in part i. states that the effect of testing effectiveness is to increase welfare and, consistent with Proposition 1, optimal 
activity. Intuitively, a change of 𝜎 affects the government’s first-order condition (5) only by lowering the effective infection rate 𝛽
(contained in 𝑓 ). More effective testing thus reduces the health benefit of depressing activity and therefore increases the optimal 
activity choice.

Part ii. states that at low infection levels, equilibrium activity also increases in 𝜎. The probability of private capital gains due to 
infection-induced awareness provides strong incentives for unaware households to be more active when these capital gains are large 
(i.e., when 𝑈 (𝑦) is low), which is the case relatively early in the epidemic.

Proposition 3 i. suggests that lockdowns and testing are substitutes when testing also reduces infections, for instance because it is 
connected with contact tracing and quarantining. In the quantitative analysis in section 6, we verify that this is indeed the case. This 
is consistent with numerical results in Piguillem and Shi (2022), according to which tests are a substitute for lockdowns. Similarly, 
Pollinger (2023) finds that testing allows to relax lockdowns. In that model, infections stop once the infectious pool falls below a 
critical mass.

6. Quantitative results

Exploiting the gains in computational efficiency afforded by our framework, we turn next to its quantitative implications. We allow 
for endogenous costs of infection, vary the activity-infection nexus and the activity smoothing motive, change key epidemiological 
parameters, introduce stochastic regime change and constraints on the government’s use of policy instruments, and analyze the 
consequences of testing and heterogeneity.

6.1. Baseline model

We focus on three key statistics to describe the policy implications. First, the share of the infected population at the end of the 
lockdown, 𝑦𝑐 . In the baseline model this is given by 0.1027. Second, the intensity of the lockdown. Since the comparative advantage 
of our framework lies with the infection dynamics in the early stage of an epidemic, we report the average activity level until 𝑦
reaches 3.5 percent or 𝑦𝑐 , whatever is smaller. In the baseline model this average, 𝑎̂ say, equals 0.6238.

And third, the welfare gain due to optimal lockdowns/inverse lockdowns. Evaluated at 𝑦(0), corresponding to the share of the 
U.S. population infected in mid March 2020, we find for the baseline model 𝑈 (𝑦(0)) ≈ −150.3 and 𝑉 (𝑦(0)) ≈ −127.1. This welfare 
difference corresponds to a gain from optimal policy of around 2513 U.S. dollars per capita in present value.45 The equivalent 
permanent reduction in consumption, either in equilibrium or under the optimal policy, 𝜙𝑢 and 𝜙𝑣 respectively, solves

1 
𝜌
(ln(𝑎⋆(1 − 𝜙𝑢)) − 𝑎⋆ + 1) = −150.3,

1 
𝜌
(ln(𝑎⋆(1 −𝜙𝑣)) − 𝑎⋆ + 1) = −127.1.

This yields 𝜙𝑢 − 𝜙𝑣 = 0.0032, i.e., the lifetime consumption equivalent of optimal policy equals 0.32 percent. We summarize these 
findings as well as the key statistics of all other scenarios in Table 2.

44 In the baseline model, the static externality is proportional to 𝜁𝑔(𝑎)∕𝑎−𝑔′(𝑎) < 0, where the inequality follows from the convexity of 𝑔 and 𝜁 < 1. Since 𝑔(𝑎̄) > 𝑔(𝑎)
and 1 − 𝜅𝜎 ∈ (0,1), the result follows.
45 See C.2 for details on this calculation. Farboodi et al. (2021) report a gain of around 4565 dollars. Their model features herd immunity effects and a higher fatality 

rate, and it assumes that recovered households increase their activity to 𝑎⋆ .
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Table 2
Key statistics for different scenarios. 𝑦𝑐 denotes the value of the state at 
which the lockdown ends; 𝑎̂ denotes the average activity level during the 
lockdown or until 𝑦(𝑡) = 0.035; and 𝜙𝑢 −𝜙𝑣 denotes the welfare gain of the 
government intervention. Numbers are rounded to four digits. See explana

tions in the text.

Scenario 𝑦𝑐 𝑎̂ 𝜙𝑢 − 𝜙𝑣

Baseline model 0.1027 0.6238 0.0032
Endogenous costs: Congestion 0.1383 0.6228 0.0046
Endogenous costs: Learning 0.0787 0.6618 0.0025
Linear activity-infections nexus 0.0322 0.7340 0.0054
Intermediate activity-infection nexus 0.0601 0.6629 0.0036
Testing and heterogeneity 0.1356 0.6835 0.0054
Regime change: Testing 0.1532 0.5633 0.0046
Regime change: Recurrent waves 0.3275 0.5509 0.0086
Constraints on policy instruments 0.1188 0.6057 0.0021
Stronger curvature of 𝑢 0.0766 0.7853 0.0019
Higher fatality rate 0.1301 0.5310 0.0058
Lower arrival rate of a cure 0.0259 0.7995 0.0043

6.2. Endogenous costs: congestion and learning effects

We relax the assumption that the unit costs of infection are constant and consider two alternative specifications. In the first, we 
assume that the costs are quadratic in the infection flow, capturing congestion effects for instance due to capacity constraints in the 
healthcare sector. To simplify comparisons, we assume that the change of specification does not alter the total health costs over the 
duration of the pandemic (see appendix C.2; in section 6.8 we analyze how higher total costs affect optimal policy). In the second 
specification, we assume that unit infection costs decrease with the cumulative share of the infected population, reflecting learning 
effects in healthcare, administration, and logistics.

We find that congestion effects imply a longer optimal lockdown duration and larger welfare gains from optimal policy compared 
to the baseline. This is broadly consistent with findings in Garibaldi et al. (2024) who argue that medical congestion externalities 
induce the planner to tighten social distancing measures in the early phase of the epidemic. Our results are also consistent with 
Alvarez et al. (2021) who find that it is only because of congestion effects that their model predicts a lockdown under the baseline 
calibration. In contrast, we find learning effects to shorten the optimal lockdown duration and to reduce the welfare gains from policy 
intervention.

6.3. Modified activity-infections nexus

Next, we modify the activity-infections nexus encoded in function 𝑔 in equation (1). We consider two alternatives to the baseline 
specification with 𝑔(𝑎) = 𝑎𝑛, 𝑛 = 2. First, the linear case with 𝑛 = 1 in which 𝑔 exhibits constant returns to scale. And second, an 
intermediate case with modestly increasing returns, 𝑛 = 1.5.

For fixed 𝑎 ≤ 1, a lower curvature parameter 𝑛 > 1 increases the marginal cost of activity perceived by households, which is 
proportional to 𝑔(𝑎)∕𝑎 = 𝑎𝑛−1. Accordingly, equilibrium in an economy with smaller 𝑛 exhibits lower activity—households behave 
more cautiously than in the baseline scenario. For the government, which perceives marginal costs proportional to 𝑔′ (𝑎) = 𝑛𝑎𝑛−1, the 
comparative statics are less clear cut since 𝑔′(𝑎) may rise or fall with 𝑛, depending on the value of 𝑎. For 𝑎≥ exp(−0.5) ≈ 0.61, which 
constitutes the relevant range, 𝑔′(𝑎) is strictly increasing in 𝑛 as long as 𝑛 ≤ 2; that is, unlike households, the government increases 
activity when 𝑛 falls.46

Fig. 4 shows optimal activity for 𝑛 = 1,1.5,2, where we use Proposition 1 to compute activity when 𝑛 = 1.5. As anticipated in 
section 2.3, the optimal policy when 𝑛 = 1.5 is closer to the optimal policy under 𝑛 = 2 than to the optimal policy under 𝑛 = 1. When 
𝑛 = 1, the optimal lockdown is substantially shorter and less strict than in the baseline. Due to households’ more cautious and the 
government’s less cautious activity choices, the optimal government intervention—in particular the inverse lockdown—has a larger 
positive welfare effect.

To the best of our knowledge, these are new results in the literature, which has struggled to analyze the epidemiologically relevant 
case of intermediate returns to scale; see Hethcote (1989) and our discussion in section 3.1.

6.4. Testing and heterogeneity

We simulate outcomes under the testing policy analyzed in section 5 for different detection probabilities.47 A low detection 
rate, 𝜎 = 0.1, is of limited consequence compared to the baseline specification. But a higher detection rate of 𝜎 = 0.5 amplifies the 
differences between laissez faire and optimal government intervention, as Fig. 5 illustrates. The figure displays optimal (solid) and 

46 For this argument, we abstract from second-order effects on the government’s choice operating through induced changes in the value function, see equation (5).
47 We set 𝜅 = 1.
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Fig. 4. Activity level in the government’s program: 𝑛= 1 (dashed, top), 𝑛 = 1.5 (solid), and 𝑛 = 2 (dashed, bottom). 

Fig. 5. Activity level in the government’s program (solid) and in equilibrium (dashed): Baseline (left panel) and test, trace, and quarantine with 𝜎 = 0.5 (right panel).

equilibrium (dashed) activity in the baseline model (left panel) and with testing when 𝜎 = 0.5 (right panel). Modest effects on the 
government’s preferred activity contrast with major changes in equilibrium activity.

Intuitively, unaware households behave less cautiously early in the epidemic because of the prospect of private capital gains upon 
becoming aware of their infection status, consistent with our third result in Proposition 3. In contrast, they behave less cautiously 
subsequently when the risk of meeting aware, infectious households has increased. As a consequence, lockdowns last longer than in 
the baseline, and the welfare gains from government intervention are larger. We emphasize that our results concern duration in state 
space, not time space; see the discussion in subsection 2.1.1.48

In line with our first result in Proposition 3, a marginal increase of 𝜎 evaluated at 𝜎 = 0 raises 𝑉 (𝑦0). Simulation results also 
show that the marginal welfare benefit of 𝜎, 𝜕𝑉 (𝑦0)∕𝜕𝜎, is hump-shaped and approaches zero as 𝜎 increases and approaches one. 
This is consistent with the notion that convex costs of improving the efficacy of testing policies, as assumed in Alvarez et al. (2021), 
Piguillem and Shi (2022), or Pollinger (2023), would give rise to an interior optimum 𝜎.

6.5. Stochastic regime changes

Next, we ask how stochastic change in the epidemiological environment affects optimal policy. We consider two scenarios. In the 
first, we allow for efficient testing to materialize stochastically, with arrival rate 𝜇 = 1∕90.49 The HJB equations that apply before the 
regime change therefore feature additional capital gains terms. In the second scenario, we allow for recurrent waves of global loss of 
immunity (e.g., due to new virus strains) that arrive once per year on average and cause the number of persons in the post group to 
revert back to 𝑦(0). This also introduces new capital gains terms in the HJB equations.50

The upside risk of effective testing in the first scenario increases the pre-regime-change values 𝑉 and 𝑈 , and it leads the government 
to wait longer before relaxing a harsher lockdown. This is consistent with results in Alvarez et al. (2021) according to which the 
anticipation of future testing results in an immediate lockdown, even when such a lockdown would not be imposed otherwise. It is 

48 The literature contains results according to which lockdowns last for fewer periods when they are accompanied by test, trace, and quarantine policies (Eichenbaum 
et al., 2021; Piguillem and Shi, 2022; Pollinger, 2023). These results need not contradict ours.
49 This reflects an expected duration of three months until the regime changes. The U.K. implemented a test-and-trace regime roughly three months into the COVID-19 

epidemic. Fetzer and Graeber (2021) show that this new regime lowered infection rates.
50 We could enrich the analysis by letting infection and/or fatality rates vary across waves.
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also consistent with Eichenbaum et al. (2022) who emphasize synergies between social distancing policies and testing/quarantining 
that arise because the former buy time for ``testing/quarantining to come to the rescue'' later (p. 2). The prospect of recurrent waves 
in the second scenario induces the government to behave even more cautiously. The optimal lockdown lengthens substantially and 
the welfare gains of optimal government intervention increase relative to the baseline.

6.6. Constraints on policy instruments

To clarify the importance of lockdown versus inverse lockdown measures, we assume next that the government can curtail eco

nomic activity but is unable to stimulate it. For high values of 𝑦 the government’s value function then coincides with the equilibrium 
value function, and across the state space the government’s value falls short of the planner’s. Solving for 𝑉 requires a modified 
boundary condition based on value matching and smooth pasting conditions.51

Ruling out inverse lockdown measures implies a longer and slightly stricter lockdown.52 Although households act too cautiously 
during the later stage of the epidemic and the government cannot correct this, its own behavior during the early stage becomes more 
cautious as well: The government acts in this way to increase the likelihood that a cure will be found by the time it surrenders control 
over activity.

Importantly, the welfare gains of the optimal intervention are substantially reduced relative to the baseline, and this is even more 
the case when 𝑛 = 1 (not reported), consistent with the discussion in section 6.3. We thus arrive at the surprising result that inverse 
lockdowns are responsible for a large share of the welfare gains of optimal policy, namely one third when 𝑛 = 2 and roughly 80
percent when 𝑛 = 1. To the best of our knowledge, these are novel results in the literature.

6.7. Stronger curvature of 𝑢

Next, we consider a modified specification of preferences, letting net utility equal 𝑢(𝑎) = −𝑎−1−𝑎+2 rather than 𝑢(𝑎) = ln(𝑎)−𝑎+1. 
That is, we assume that the intertemporal elasticity of substitution of consumption equals one half rather than one. This reflects, for 
example, limited possibilities for households to self insure, rendering it costlier to lower activity. We stress that the literature avoids 
deviations from logarithmic or linear preferences, due to the resulting numerical complications. In contrast, our setup can easily deal 
with this generalization.

We find that, as a consequence of the lower elasticity of substitution, activity falls by less than in the baseline scenario, both 
in equilibrium and under the optimal policy. The optimal lockdown is shorter, and the welfare gains due to optimal government 
intervention are smaller.

6.8. Higher fatality rate and lower arrival rate of a cure

We also consider the effects of an increase in the fatality rate by fifty percent, and of a lower arrival rate of a cure that increases the 
expected duration to cure discovery from 1.5 to 5 years. In the first scenario, the government acts more cautiously while the opposite 
happens in the second. Intuitively, a smaller 𝜈 value limits the option to avoid future infections by delaying, and this reduces the 
incentive to sacrifice livelihoods in order to protect lives. In contrast, households reduce equilibrium activity only in response to a 
higher fatality rate; the arrival rate has no effect on their behavior because it does not affect the static tradeoff between activity and 
infection risk. Relative to the baseline, the benefits of government intervention are higher in both scenarios.

6.9. Summary

We draw several conclusions from our quantitative analyses. First, the baseline scenario implies an optimal activity reduction 
during the early phase of the lockdown of roughly 38 percent.

Second, many of the qualitative comparative statics results are as expected: The optimal lockdown lengthens (in state space), and 
activity falls, when the fatality rate or the arrival rate of a cure increase, when congestion effects are stronger, or when learning 
effects are weaker. Testing policies that reduce the effective infection rate, or the prospect of such policies, increase the lockdown 
duration as well.

Third, other comparative statics results, including some novel ones, are more surprising, specifically in terms of size: The threat 
of recurrent infection waves triggers a large increase in the optimal lockdown duration and strictness, while a linear or near-linear 
activity-infection nexus or strong consumption smoothing needs have the opposite effect. The model implied welfare gains suggest 
that government intervention is particularly important when recurrent infection waves are a threat.

Finally, the most striking result concerns inverse lockdowns—stimulus measures that the government imposes once the economy 
starts to see the end of the tunnel: It is these measures that are responsible for a large, maybe even the dominant share of the welfare 
gains from optimal government intervention.

51 At 𝑦̂ say the government ends the lockdown (and would like to revert but cannot). We first solve for 𝑈 and then find 𝑉 and 𝑦̂ from the conditions 𝑉 (𝑦̂) = 𝑈 (𝑦̂), 
𝑉 ′(𝑦̂) =𝑈 ′(𝑦̂).
52 In all other scenarios the lockdown ends when the total externality equals zero. This is not the case here.



Journal of Economic Dynamics and Control 178 (2025) 105145

18

M. Gonzalez-Eiras and D. Niepelt 

Table 3
Temporary reductions in 𝑔(𝑎) in the SIR model such that 𝑧∞ falls by one percent relative to the 
outcome with unit activity.

𝑔(𝑎) 0.9000 0.8000 0.7000 0.6000 0.5000 0.4500 0.4300 0.4250

𝐷, days 139 151 181 247 448 917 1979 3358
𝜄𝐷 + 𝑧𝐷 0.2060 0.1044 0.0678 0.0512 0.0402 0.0365 0.0352 0.0349

7. Conclusion

We have developed a computationally efficient and flexible model of epidemic control and equilibrium dynamics. Households 
adjust activity for fear of infection but do not internalize static and dynamic externalities. This opens a role for government inter

vention. We have proved that the optimal policy function is continuous and have established theoretical results whose intuitions 
extend to frameworks with larger state spaces. Moreover, we have exploited the gain in computational efficiency afforded by our 
model to numerically characterize equilibria and optimal government interventions in a large set of scenarios. Our findings may be 
summarized as follows:

First, a lockdown—government measures to curtail activity below its equilibrium level—is followed by the opposite, an inverse 
lockdown that stimulates activity. The reason for this is that, eventually, activity generates positive externalities because it drives the 
economy out of the crisis range with high infections. A substantial part of the welfare gains of optimal government intervention stems 
from the inverse lockdown. Second, testing policies may substitute for lockdowns but lockdowns are stricter when testing capabilities 
are expected to improve in the future.

Third, the policy implications of the baseline model are robust to many variations in parameter values and scenarios. Calibrated 
to match features of the COVID-19 pandemic in the U.S., the model’s baseline specification suggests that activity should immediately 
have been reduced by 38 percent in mid March 2020 to yield welfare gains of 0.32 percent of lifetime consumption, equivalent to 
roughly 2500 U.S. dollars per capita in present value. Interestingly, a large part of these welfare gains arise from inverse lockdowns.

Fourth, there are three scenarios that call for major changes of policy relative to the baseline: When activity smoothing is essential 
because households cannot self insure their consumption, or when the activity-infection nexus is linear or near-linear, shorter and 
more lenient lockdowns are needed. In contrast, the threat of recurrent waves calls for longer and stricter lockdowns.

Our workhorse model allows for many other possible extensions. One important avenue for future research concerns additional 
dimensions of heterogeneity beyond those due to imperfect observability of infection status. A related avenue concerns conflicts of 
interest and political frictions that affect government interventions.53 The results on lockdowns and inverse lockdowns also call for 
a richer analysis of the fiscal consequences of optimal policy.

Scientists agree that humanity will be confronted with another pandemic in the not too far future. As in the spring of 2020, the 
key policy decisions to address the difficult tradeoffs between lives and livelihoods will have to be taken in the first few weeks of 
that pandemic. Our model captures these tradeoffs well, in particular if the likelihood of a cure is relatively high, and its flexibility 
and computational efficiency allows to identify robust policy responses.

Appendix A. Limitations of the one-state-variable approach

Since the long-run share of susceptible households is endogenous in the SIR model but exogenous in the logistic framework, some 
policy tradeoffs are present in the former but absent in the latter model. The question is how relevant these tradeoffs are during the 
early stage of an epidemic. To answer this question we pursue three approaches; all imply that the tradeoffs are not relevant during 
the early stage.

First, we find the duration 𝐷 such that reducing activity from 1 to 𝑎 at the beginning of the epidemic for the duration 𝐷, and 
reverting back to unity thereafter reduces 𝑧∞, the long-run share of the recovered population in the SIR model, by one percent. 
Table 3 reports how 𝐷 as well as the share of the population that undergoes infection while activity is reduced depends on the value 
of 𝑎 (indexed by 𝑔(𝑎) for generality). For example, if activity is reduced by little, 𝑔(𝑎) = 0.9000, then 𝑧∞ falls by one percent when 
the activity reduction lasts for 𝐷 = 139 days; the share of the population that undergoes infection during this period exceeds twenty 
percent. If 𝑔(𝑎) = 0.4250, in contrast, then 𝑧∞ falls by one percent when activity is reduced over a very long period, 𝐷 = 3358 days, 
and the share of the population that undergoes infection in this case equals just 3.49 percent. (Even stronger activity reductions are 
ruled out.54)

We conclude from this exercise that in the SIR model policy interventions up to the point at which 3.5 percent of the population 
have undergone infection, which corresponds to 𝑦 = 0.0350 in the logistic model, have an effect on 𝑧∞ of at most one percent�-

rendering herd immunity considerations unimportant. When we double the basic reproduction number then the critical 𝑦 value is 
even higher, roughly 15 percent.

53 Gonzalez-Eiras and Niepelt (2022) analyze the roles of partisanship and career concerns in shaping government responses to the first wave of the COVID-19 
epidemic across U.S. states.
54 For 𝑔(𝑎) < 0.4168 the infected pool shrinks during the intervention. Pollinger (2023) studies optimal suppression policies. For 𝑔(𝑎) > 0.9768 the effect on 𝑧∞ is 

smaller than one percent even if 𝐷→∞.
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Second, we contrast the optimal policy in the logistic model with the policy found by Farboodi et al. (2021) who study the 
government’s problem in the SIR model under the same assumptions as we do in the baseline scenario.55 From figure 19 in the online 
appendix of Farboodi et al. (2021) we recover their optimal policy during the first two years of the epidemic. We fit a fourth-degree 
polynomial to the activity series and use it as input for a SIR simulation.56 Associating 𝑦 in the logistic model with 𝜄 + 𝑧 in the SIR 
simulation, we represent the optimal policy in Farboodi et al. (2021) (as far as their paper reports it, namely for 𝑦 ≤ 0.0305) as a 
function of 𝑦, see Fig. 1. The optimal policy based on the analysis in Farboodi et al. (2021) is practically identical to the one we find 
in the logistic model.

Third, we feed the optimal policy during the first two years of the epidemic for another scenario, as reported by Farboodi et al. 
(2021) in their figure 4. We stipulate plausible continuation policies after the first two years that differ strongly, but we find that 
welfare under the different continuation policies is essentially unchanged (and differs by less than one percent from the reported 
number).57

The fact that our model abstracts from policy implications for the long-run share of susceptible households implies that it predicts 
optimal activity close to one when motives to delay infections are absent (i.e., when 𝜌 + 𝜈 → 0). Even in this case, however, the 
predictions of our model and of SIR-based analyses remain very similar during the early phase of an epidemic because, as argued 
above, SIR-based analyses also abstract from these implications during the early phase.

Appendix B. Proofs

B.1. Proof of Lemma 1

Proof. When 𝑇 <∞, Assumptions 1 and 2 imply 𝑉 (𝑦,0) = 𝑈⋆ since there is no reason to reduce activity below the first-best level 
when infection risk is zero, which is the case when a cure has arrived. Also, 𝑉 (𝑦, 𝑑) <𝑈⋆ for all (𝑦, 𝑑) ∈ (0, 𝑦̄)×(0, 𝑇 ] since an epidemic 
involves costs. When 𝑇 =∞, parallel logic implies 𝑉 (0) = 𝑉 (𝑦̄) =𝑈⋆ and 𝑉 (𝑦) <𝑈⋆ for all 𝑦 ∈ (0, 𝑦̄).

Independent of 𝑇 , Assumptions 1 and 2 imply

i. 𝑢 and 𝑓 are continuous and bounded for all 𝑦 ∈ [0, 𝑦̄], 𝑎 ∈𝐴, and 𝐴 is compact;

ii. |𝑓 (𝑥, 𝑎) − 𝑓 (𝑦, 𝑎)| ≤ 𝛽𝑦̄max[1,𝜔]|𝑥− 𝑦| for all 𝑥, 𝑦 ∈ [0, 𝑦̄], 𝑎 ∈𝐴.

Condition i. and Assumptions 1 and 2 (𝜌, 𝜈 ≥ 0; if 𝑇 =∞ then 𝜌+ 𝜈 > 0) imply that 𝑉 is bounded from above and below. Conditions 
i. and ii. imply that there exists a unique solution 𝑦(𝑡;𝐚, 𝑦0), 𝑡 ∈ [0, 𝑇 ] for each (𝑦0,𝐚) ∈ [0, 𝑦̄] ×  (see section III.5 in Bardi and 
Capuzzo-Dolcetta (1997), henceforth BCD).

Also independent of 𝑇 , conditions i. and ii. imply that assumptions A0, A1, A3 and A4 or A4’ (depending on whether 𝑇 is infinite 
or finite, respectively) in chapter III of BCD are satisfied. Condition A5 in chapter III of BCD is satisfied because 𝑃⋆ is independent 
of the state. Conditions i. and ii. also imply that condition H1 in chapter II of BCD is satisfied (by remark 3.4 in chapter II). Finally, 
conditions i. and ii. with Assumptions 1 and 2 (finite 𝜔,𝑢′(𝑎)) imply that 𝑓 and 𝑢 − 𝜓𝑓 are global Lipschitz continuous in the state 
space and uniform continuous in the control variable. Lipschitz continuity of 𝑓 implies that A2 in chapter III of BCD is satisfied.

Under A0, A1, A3 and either A4 or A4’ and A5 (depending on whether 𝑇 is infinite or finite, respectively) the Dynamic Program

ming Principle holds (propositions 2.5 and 3.2 in section III of BCD, respectively). This implies that the value function 𝑉 is a viscosity 
solution of the HJB equation stated in the lemma (propositions 2.8 and 3.5 in chapter III of BCD, respectively).

The viscosity solution is unique. When 𝑇 =∞ this follows from the fact that any solution of the HJB equation must satisfy the 
boundary conditions 𝑉 (0) = 𝑉 (𝑦̄) = 𝑈⋆, and under H1 two viscosity solutions that are identical on the boundary of the state space 
must be identical over the entire state space (theorem 3.1 with remarks 3.2 and 3.4 in chapter II of BCD). When 𝑇 <∞ uniqueness 
follows under A0--A4’ and A5 from theorem 3.7 in chapter III of BCD (noting that A0--A4 imply (2.18) in chapter III of BCD).

When 𝑇 <∞, A0, A1, A3, A4’, A5 and Lipschitz continuity of 𝑃⋆ imply that the value function is Lipschitz continuous (proposition 
3.1 (iii) in chapter III of BCD). When 𝑇 =∞, A0, A1, A3, A4 and Lipschitz continuity in 𝑦, uniform continuity in 𝑎 of 𝑢− 𝜓𝑓 imply 
that 𝑉 is Hölder continuous with exponent min[ 𝜌+𝜈 

𝛽𝑦̄𝜓max[1,𝜔] ,1] (proposition 2.1 in chapter III of BCD). □

B.2. Proof of Proposition 1

Proof. Consider first the case of 𝑇 <∞. Derivations in the text imply that the first-order condition (5) holds at all points in the 
state space where the value function is differentiable with respect to 𝑦. Substituting the first-order condition into the HJB equation 
therefore implies that

(𝜌+ 𝜈)𝑉 (𝑦, 𝑑) = 𝑢(𝑎(𝑦, 𝑑)) − 𝑢′(𝑎(𝑦, 𝑑)) 𝑔(𝑎(𝑦, 𝑑)) 
𝑔′(𝑎(𝑦, 𝑑))

− 𝑉𝑑 (𝑦, 𝑑) + 𝜈𝑈⋆ (11)

55 Farboodi et al. (2021) stipulate, as we do, a logarithmic benefit and linear cost of economic activity as well as health cost proportional to infections. We refer to 
the appendix of the paper where the authors analyze the case in which recovered individuals are unaware of their health status, as in our baseline model. We use the 
parameter values reported in Farboodi et al. (2021).
56 To recover the numerical values we use the software WebPlotDigitizer available at https://apps.automeris.io/wpd/.
57 One continuation policy features constant activity at the last reported value in figure 4; another policy adjusts activity to maintain the effective reproduction rate 

at the last reported value.

https://apps.automeris.io/wpd/
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at all such points. From Lemma 1, 𝑉 is Lipschitz continuous. By the Rademacher’s theorem this implies that 𝑉 is differentiable almost 
everywhere (proposition 1.9 in chapter II of BCD). Condition (11) thus holds almost everywhere in state space.

Consider two points (𝑦1, 𝑑) and (𝑦2, 𝑑) at which 𝑉 is differentiable. Since 𝑉 is differentiable almost everywhere we can let |𝑦1 − 𝑦2| < 𝜖 for any 𝜖 > 0. Continuity of 𝑢, 𝑢′, 𝑔, 𝑔′, 𝑉𝑑 and 𝑉 (Lemma 1) on the line segment between (𝑦1, 𝑑) and (𝑦2, 𝑑) implies, 
from equation (11), that the policy function is continuous as well, so |𝑎(𝑦1, 𝑑)−𝑎(𝑦2, 𝑑)| <𝑤(𝜖) where 𝑤 denotes a modulus function. 
Consider a point (𝑦, 𝑑) on the line segment and suppose that 𝑉 is not differentiable at this point. From first-order condition (5) this 
implies that 𝑎(𝑦, 𝑑) is not continuous at that point either, contradicting the previous result. We conclude that 𝑉 is differentiable 
throughout the state space.

Consider next the case when 𝑇 =∞. While equation (11) continues to hold (without the 𝑉𝑑 term) at all points in the state space 
where 𝑉 is differentiable, Lemma 1 does not guarantee that 𝑉 is Lipschitz continuous. However, as shown below, the policy function 
has bounded variation and since 𝑓 (𝑔), 𝑢 as well as the discounting function are of bounded variation the integrand of the value 
function defined as in (4) is of bounded variation (Kolmogorov and Fomin, 1970, section 32) and therefore integrable. Corollaries 
1 and 2 in section 33.2 in Kolmogorov and Fomin (1970) then imply that 𝑉 is differentiable almost everywhere and an argument 
parallel to the one when 𝑇 <∞ implies that 𝑉 is differentiable throughout the state space.

To establish bounded variation of the policy function suppose to the contrary that there exists no finite partition of the state space 
such that 𝑎 is monotone in each subinterval of the partition. Consider a compact subset [𝑦𝑎, 𝑦𝑏] ⊂ [0, 𝑦̄] of the state space on which 𝑎
is not of bounded variation and form the partition [𝑦0, 𝑦1), [𝑦1, 𝑦2),… , [𝑦𝑛−1, 𝑦𝑛] where 𝑦0 = 𝑦𝑎, 𝑦𝑛 = 𝑦𝑏 and 𝜖 ≡ sup𝑖{𝑦𝑖−𝑦𝑖−1}𝑖=1,2,…,𝑛
is arbitrarily close to zero. Recall that 𝑎 is non-monotone in each subinterval 𝑖.58 Denote by 𝑡(𝑦𝑖) the time at which the economy 
reaches state 𝑦𝑖 and let Δ𝑡(𝜖) = sup𝑖{𝑡(𝑦𝑖)− 𝑡(𝑦𝑖−1)}𝑖=1,…,𝑛. Since 𝑎 ≥ 𝑎 > 0 we can make Δ𝑡(𝜖) arbitrarily close to zero by appropriately 
choosing 𝜖. Consider an alternative policy 𝑎̃ that is constant on each subinterval 𝑖 and implies the same sequence {𝑡(𝑦𝑖)}𝑖=1,…,𝑛 as 
the original policy.59 Policy 𝑎̃ has two properties: First, the policies 𝑎 and 𝑎̃ generate the same discounted cost of infections. This 
follows from the fact that 𝜖 is arbitrarily close to zero such that discounting within each subinterval 𝑖 can be disregarded, and because 
both policies imply the same sequence {𝑡(𝑦𝑖)}𝑖=1,…,𝑛. Second, 𝑎̃ weakly exceeds the average of the original policy on each subinterval 
because of the convexity of 𝑔. Since 𝑢 is strictly concave and 𝑎̃ is in each subinterval both smoother and on average higher than policy 
𝑎 the former policy generates higher discounted utility. We conclude that 𝑎̃ dominates 𝑎, and thus that the optimal policy must be of 
bounded variation.

Assume for notational simplicity that the horizon is infinite. Since the value function is differentiable and policy continuous; and 
since 𝑈⋆ = 0 and 𝑉 (0) = 0, equation (7) implies that lim𝑦↓0 𝑢(𝑎(𝑦)) − 𝑢′(𝑎(𝑦))

𝑔(𝑎(𝑦)) 
𝑔′(𝑎(𝑦)) = 0. Since for 𝑎 ∈ [0, 𝑎⋆] we have 𝑢(𝑎) ≤ 0 and 

𝑢′(𝑎) 𝑔(𝑎) 
𝑔′(𝑎) ≥ 0, both with equality only if 𝑎 = 𝑎⋆, it follows that lim𝑦↓0 𝑎(𝑦) = 𝑎⋆.

Finally, consider the alteration of a parameter other than 𝜌, 𝜈, or 𝑇 (which determines 𝑑). If this alteration changes 𝑉 (𝑦, 𝑑) then, 
from relation (7), it must also change 𝜙(𝑎(𝑦, 𝑑)) ≡ 𝑢(𝑎(𝑦, 𝑑)) − 𝑢′(𝑎(𝑦, 𝑑)) 𝑔(𝑎(𝑦,𝑑)) 

𝑔′(𝑎(𝑦,𝑑)) , and both changes must have the same sign. Since 𝑢
is increasing in [𝑎, 𝑎⋆] and strictly concave, and 𝑔 strictly increasing and weakly convex, we have

𝑑𝜙(𝑎)
𝑑𝑎 

= 𝑢′(𝑎) − 𝑢′′(𝑎) 𝑔(𝑎) 
𝑔′(𝑎)

− 𝑢′(𝑎) + 𝑢′(𝑎) 𝑔(𝑎) 
𝑔′(𝑎)2

𝑔′′(𝑎)

= −𝑢′′(𝑎) 𝑔(𝑎) 
𝑔′(𝑎)

+ 𝑢′(𝑎) 𝑔(𝑎) 
𝑔′(𝑎)2

𝑔′′(𝑎) > 0.

For sgn(Δ𝑉 (𝑦, 𝑑)) to equal sgn(Δ𝜙(𝑎(𝑦, 𝑑))), we thus must have sgn(Δ𝑉 (𝑦, 𝑑)) = sgn(Δ𝑎(𝑦, 𝑑)). □

B.3. Proof of Proposition 2

Proof. Part i. follows because the value function is decreasing in a neighborhood of 𝑦 = 0 (from Lemma 1) implying that the static 
and dynamic externalities both are negative. Part ii. follows from lemma 2 (in the online appendix), which states that 𝑉 is strictly 
convex in [𝑦min, 𝑦̄] and

max 
𝑦∈[𝑦min ,𝑦̄]

𝑉 ′(𝑦) = 𝑔(𝑎⋆)𝛽𝑦̄𝜔𝜓 
𝜌+ 𝜈 + 𝑔(𝑎⋆)𝛽𝑦̄𝜔

,

and the fact that the total externality is proportional to 𝑉 ′(𝑦) +𝜓(𝜁∕𝑛−1). Under the stated condition the total externality therefore 
eventually (and for 𝑦 < 𝑦̄) turns positive and the government imposes an inverse lockdown. Since 𝑉 is strictly convex in [𝑦min, 𝑦̄] and 
𝑦𝑐 ≥ 𝑦min the total externality switches signs only once, at 𝑦𝑐 . □

B.4. Proof of Proposition 3

Proof. Let 𝑓 (𝑦, 𝑎;𝜎) denote 𝑓 (𝑦, 𝑎) in (1) with 𝛽 replaced by 𝛽 = (1− 𝜅𝜎)𝛽. By optimality, the total derivative of 𝑉 with respect to 𝜎
exceeds the direct effect of a change in 𝜎 keeping the activity path constant. From the definition of 𝑉 in equation (4) with 𝑓 replaced 
by 𝑓 , and from 𝑑𝑓 (𝑦,𝑎;𝜎)

𝑑𝜎 = −𝜅𝑓 (𝑦, 𝑎; 0),

58 Since 𝑎 is not of bounded variation there exists for each subinterval 𝑖 a 𝑦 ∈ [𝑦𝑖−1, 𝑦𝑖−1 + 𝜖∕3) such that sgn(𝑎(𝑦+ 𝜖∕3) − 𝑎(𝑦)) = −sgn(𝑎(𝑦+ 2𝜖∕3) − 𝑎(𝑦+ 𝜖∕3)).
59 Alternatively, 𝑎̃ could be constructed based on a monotone contraction of 𝑎 on each subinterval of the partition.
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𝜕𝑉 (𝑦)
𝜕𝜎 

|a = 𝜅
∞ 

∫
0 
𝜓 𝑓 (𝑦, 𝑎; 0) e−(𝜌+𝜈)𝑡𝑑𝑡 ≥ 0.

Proposition 1 then implies that optimal activity increases in 𝜎. This completes the proof of part i.
Part ii. follows from totally differentiating the first-order condition (5) (with 𝑓 (𝑦, 𝑎) replaced by 𝑓 (𝑦, 𝑎;𝜎)) with respect to 𝜎 and 

𝑎, holding 𝑉 ′(𝑦) fixed.

For part ii., consider the optimality condition characterizing the equilibrium activity choice 𝑎𝑖(𝑦),

𝑢′(𝑎𝑖(𝑦)) =
𝜁𝜓 − 𝜎(𝑈⋆ −𝑈 (𝑦))

𝑎𝑖(𝑦) 
𝑔(𝑎̄(𝑦))ℎ(𝑦),

where 𝑎̄(𝑦) = 𝜎𝑦𝑎⋆ + (1 − 𝜎𝑦)𝑎𝑖(𝑦) and ℎ(𝑦) ≡ 𝛽𝑦̄𝑦(1 − (
𝑦

𝑦̄

)𝜔)
. Totally differentiating with respect to 𝑎𝑖(𝑦) and 𝜎 yields(

𝑢′′(𝑎𝑖(𝑦)) −
𝜁𝜓 − 𝜎(𝑈⋆ −𝑈 (𝑦))

𝑎𝑖(𝑦) 
𝑔(𝑎̄(𝑦))ℎ(𝑦)

[
𝑔′(𝑎̄(𝑦))
𝑔(𝑎̄(𝑦)) 

(1 − 𝜎𝑦) − 1 
𝑎𝑖(𝑦)

])
𝑑𝑎𝑖(𝑦)

=
(
𝜁𝜓 − 𝜎(𝑈⋆ −𝑈 (𝑦))

𝑎𝑖(𝑦) 
𝑔′(𝑎̄(𝑦))(𝑎⋆ − 𝑎𝑖(𝑦))𝑦−

(𝑈⋆ −𝑈 (𝑦))
𝑎𝑖(𝑦) 

𝑔(𝑎̄(𝑦))
)
ℎ(𝑦)𝑑𝜎.

The term in parentheses on the left-hand side is negative for 𝑦 ↓ 0. This follows from 𝑢′′(𝑎𝑖(𝑦)) ≤ 0, 𝜁𝜓 − 𝜎(𝑈⋆ −𝑈 (𝑦)) ≥ 0 (implied 
by the first-order condition and 𝑔(𝑎̄(𝑦))ℎ(𝑦) ≥ 0), and 𝑔′(𝑎𝑖(𝑦))𝑎𝑖(𝑦) ≥ 𝑔(𝑎𝑖(𝑦)) (implied by weak convexity of 𝑔).

Our goal is to establish a condition under which the term in parentheses on the right-hand side is negative for 𝑦 ↓ 0, such that 
𝑑𝑎𝑖(𝑦)∕𝑑𝜎 > 0 for 𝑦 ↓ 0. Note first that

𝑈 (𝑦) ≤ 𝑢(𝑎(𝑦)) − 𝑢′(𝑎(𝑦)) 𝑔(𝑎(𝑦)) 
𝑔′(𝑎(𝑦))

(𝜌+ 𝜈) 
,

where 𝑎(𝑦) denotes the optimal policy; this follows from 𝑉 (𝑦) ≥𝑈 (𝑦) and the representation of 𝑉 (𝑦) given in Proposition 1. The term 
in parentheses on the right-hand side thus satisfies

𝜁𝜓 − 𝜎(𝑈⋆ −𝑈 (𝑦))
𝑎𝑖(𝑦) 

𝑔′(𝑎̄(𝑦))(𝑎⋆ − 𝑎𝑖(𝑦))𝑦−
(𝑈⋆ −𝑈 (𝑦))

𝑎𝑖(𝑦) 
𝑔(𝑎̄(𝑦))

=
𝑢′(𝑎𝑖(𝑦)) 
𝑔(𝑎̄(𝑦))ℎ(𝑦)

𝑔′(𝑎̄(𝑦))(𝑎⋆ − 𝑎𝑖(𝑦))𝑦−
(𝑈⋆ −𝑈 (𝑦))

𝑎𝑖(𝑦) 
𝑔(𝑎̄(𝑦))

≤ 𝑢′(𝑎𝑖(𝑦)) 
𝑔(𝑎̄(𝑦))ℎ(𝑦)

𝑔′(𝑎̄(𝑦))(𝑎⋆ − 𝑎𝑖(𝑦))𝑦−
𝑈⋆

𝑎𝑖(𝑦)
𝑔(𝑎̄(𝑦)) +

𝑢(𝑎(𝑦)) − 𝑢′(𝑎(𝑦)) 𝑔(𝑎(𝑦)) 
𝑔′(𝑎(𝑦))

(𝜌+ 𝜈)𝑎𝑖(𝑦) 
𝑔(𝑎̄(𝑦)).

Since 𝑈⋆ = 0 and 𝑢(𝑎(𝑦)) ≤ 0, it suffices to show that

𝑢′(𝑎𝑖(𝑦))
𝑔(𝑎̄(𝑦)) 

𝑔′(𝑎̄(𝑦))(𝑎⋆ − 𝑎𝑖(𝑦)) − 𝑢′(𝑎(𝑦))
𝑔(𝑎(𝑦)) 
𝑔′(𝑎(𝑦))

𝑔(𝑎̄(𝑦)) 
(𝜌+ 𝜈)𝑎𝑖(𝑦)

ℎ(𝑦)
𝑦 

≤ 0.

Since 𝑎(𝑦) ≤ 𝑎𝑖(𝑦) for 𝑦 ↓ 0 (from Proposition 2), we have 𝑢′(𝑎𝑖(𝑦)) ≤ 𝑢′(𝑎(𝑦)) for 𝑦 ↓ 0, and it therefore suffices to establish that

𝑔′(𝑎̄(𝑦))
𝑔(𝑎̄(𝑦)) 

(𝑎⋆ − 𝑎𝑖(𝑦)) ≤ 𝑔(𝑎(𝑦)) 
𝑔′(𝑎(𝑦))

𝑔(𝑎̄(𝑦)) 
(𝜌+ 𝜈)𝑎𝑖(𝑦)

ℎ(𝑦)
𝑦 
.

Since the functions 𝑔, 𝑔′, ℎ∕𝑦 are bounded over the relevant domain, and since 𝑎𝑖(𝑦) ↑ 𝑎⋆ for 𝑦 ↓ 0, this condition is indeed satisfied 
for 𝑦 ↓ 0. We conclude that 𝑑𝑎𝑖(𝑦)

𝑑𝜎 > 0 for 𝑦 ↓ 0. □

Appendix. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jedc.2025.105145. 
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