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1 Introduction

To “flatten the curve” of severe respiratory tract infections caused by Covid-
19, policy makers around the world have imposed strict social distancing
measures and partial lockdowns. In that context, a first-order policy ques-
tion is how strict such measures should be and for how long they should be
imposed. In this note, we propose two simple models based on the classical
epidemiological framework with an embedded policy choice to address this
question.

Our analysis starts from a framework with “susceptible,” “infected,” and
“removed” (deceased or fully recovered) persons in the tradition of the clas-
sical article by Kermack and McKendrick (1927). In that framework tran-
sitions between the subgroups with different health status are governed by
epidemiological parameters. We augment this framework by allowing for a
policy choice—reflecting the level of economic activity—to affect infection
rates. Higher activity increases production but also raises the rate of infec-
tions, causing future production shortfalls due to death as well as an over-
burdening of the health care system. Since current and future production
shortfalls and health care costs enter society’s loss function the government’s
program is a dynamic one: to select the optimal path for activity (or social
distancing or lockdowns).

This dynamic program cannot be solved in closed form. In parallel, on-
going work Alvarez et al. (2020) therefore numerically solve for the optimal
policy path. We pursue a complementary approach: We simplify the epi-
demiological framework slightly and build two nested, much more tractable
models. One of them can be solved in closed form and the other can “nearly”
be solved in closed form. Together, the two models offer transparent and
easy-to-compute answers to the policy question at hand. We believe that this
is valuable, in particular when information about an infectious disease—like
Covid-19 now—is sparse and the task is to gain a first, basic understanding
of the tradeoffs at work.

We allow the government’s program to reflect several factors that promi-
nently feature in policy discussions. For example, one of our models features
convex costs of flows from the susceptible to the infected population, intro-
ducing a role for policies that flatten the curve. Similarly, our other model
includes learning effects in the health care sector which introduce a role for
delaying such flows. The learning effects reflect the fact that except for a
few countries mostly in the Far East (that had experienced similar outbreaks
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in the past), governments and public health agencies across the globe were
left scrambling after the surge in Covid-19 infections; over time, we should
expect experience and more adequate supplies of equipment to relax some of
the current bottlenecks.

When we calibrate the models using information about the projected
death toll, health care stress, and output losses in the US due to the cur-
rent Covid-19 shock we find that the optimal lockdown is quite severe and
prolonged: Activity is optimally reduced by two thirds, for roughly 50 days.
We conduct a series of robustness checks and find that all resulting model
predictions are in the same ballbark.

As mentioned before our work is closely related to ongoing work by
Alvarez et al. (2020). Other recent contributions that merge basic epidemi-
ology and economics include Atkeson (2020), Eichenbaum et al. (2020), and
Stock (2020). For discussions of the broader policy options, see for example
Baldwin and Weder di Mauro (2020a; 2020b).

2 The Model

Our analysis is based on the canonical epidemiological model (the SIR model)
due to Kermack and McKendrick (1927). We simplify that framework to
improve tractability and imbed policy decisions that capture the severity
and duration of a “lockdown.” In this section we review the SIR model and
introduce policy objective and instrument.

2.1 SIR Model

The SIR model specifies laws of motion in continuous time for the population
shares of three groups that differ with respect to health status. The three
groups are the “susceptible,” the “infected,” and the “removed,” and their
respective population shares at time t ≥ 0 are denoted by x(t), y(t), and
z(t), where x(t) + y(t) + z(t) = 1. We normalize the population size to
unity. Accordingly, the population shares x(t), y(t), and z(t) correspond to
the “number” of susceptible, infected, and removed persons.

At time t = 0 the population consists of x(0) susceptible persons and
a few infected persons, y(0). There are no removed persons at this time,
z(0) = 0. In each instant after time t = 0, the infected transmit their infec-
tion to the susceptible and a fraction of the infected either dies or develops

70
C

ov
id

 E
co

no
m

ic
s 7

, 2
0 

A
pr

il 
20

20
: 6

8-
87



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

resistance. Formally, following Bohner et al. (2019), the change of the num-
ber of susceptible, infected, and removed persons, respectively, satisfies

ẋ(t) = −b(t)x(t)
y(t)

x(t) + y(t)
, (1)

ẏ(t) = −ẋ(t)− (cd + cr)y(t), (2)

ż(t) = (cd + cr)y(t). (3)

Here, b(t) denotes a possibly time-varying infection rate. As in Bohner et al.
(2019) it reflects epidemiological factors which we take as exogenously given.
Unlike Bohner et al. (2019) we allow b(t) to also reflect government policy
(see below). The extent to which susceptible persons are infected depends
on their number, x(t); the infection rate, b(t); and the share of the infected
in the susceptible or infected population.

The number of infected persons increases one-to-one with each susceptible
that gets infected. At the same time, a share c ≡ cd + cr of the infected
population dies or recovers; the coefficients cd and cr parameterize the flow
into death and recovery, respectively.

The system (1)–(3) can be solved (see appendix A) for

x(t) = x(0)e

∫
t

0
−κb(u)

κ+e

∫
u
0 (c−b(s))ds

du
, (4)

y(t) = y(0)e

∫
t

0
b(u)

1+κe

∫
u
0 (b(s)−c)ds

−c du
, (5)

z(t) = 1− x(t)
(

1 + κe
∫
t

0
(b(s)−c)ds

)

s.t. (4), (6)

where κ ≡ y(0)/x(0).
Figure 1 illustrates the dynamics when we let b(t) = β, the fundamental

infection rate absent any policy intervention.1 We measure time in days and
let β = 0.2, cr = (0.05)(0.99), and cd = (0.05)(0.01).2

1Equation (2) implies that at the beginning of an epidemic when x(t) ≈ 1 and z(t) ≈ 0,
rate β equals the growth rate of the number of persons who are or were infected:

ẏ(t) + ż(t)

y(t) + z(t)
= βy(t)

x(t)

x(t) + y(t)

1

y(t) + z(t)
≈ β.

2We take the value for β from Alvarez et al. (2020) and assume that 5 percent of the
infected are removed, of which 1 percent dies.
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x(t), y(t), z(t) [r, d]

Figure 1: Dynamics in the SIR model: x(t) (solid), y(t) (dashed), and z(t)
(recovered and deceased, dotted).

2.2 Policy Objective and Instrument

The basic tradeoff we are interested in is the conflict between fostering eco-
nomic activity and slowing down the spread of infections. Almost all coun-
tries that have responded to the spread of Covid-19 by imposing severe re-
strictions on mobility and economic activity have motivated these restrictions
with the aim to delay infections or to “flatten the curve,” i.e., to reduce the
speed at which infections occur. The main argument for delay is to gain
time in which health care providers can prepare for the higher case load.
The main argument for flattening the curve is to limit the stress that Covid-
19 infections impose on the health care system—specifically on intensive care
units—because this stress increases fatality rates. In the SIR model outlined
above, both measures to delay and to flattening the curve correspond to
policy interventions that push b(t) below β.

Let a(t) ∈ A denote a measure of economic activity inversely related to
lockdown policies such as social distancing, forced shutdowns of businesses,
etc. The maximum element of A is unity, representing the regular level
of activity. The minimum element of A (which is nonnegative) represents
the lower bound on activity or upper bound on lockdown policies. This
minimum could be strictly positive, reflecting the fact that even during an
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extreme lockdown elementary goods and services need to be produced (e.g.,
in the food, energy, or health care sector) or that political constraints prevent
extreme containment policies.

Activity a(t) increases the spread of infections, which imposes a burden
on the health care system, and it raises output. We assume that the infection
rate satisfies

b(t) = βf(a(t))

for some smooth increasing function f . Moreover, we assume that output
is a smooth increasing function g of activity which may also depend on the
population shares,

output(t) = g(a(t), x(t), y(t), z(t)),

and satisfies g(1, 1, 0, 0) = 1 (i.e., we normalize output in “normal” times to
unity). Finally, we assume that the burden that new infections impose on
the health care system is a smooth increasing function h of ẏ(t),

burden(t) = h(ẏ(t), t).

Let ρ denote the rate of time preference and ν the hazard rate with which
a new vaccine is discovered. The policy problem then reads

max
(a(t))∞

t=0

∫

∞

0

e−(ρ+ν)t {g(a(t), x(t), y(t), z(t))− h(ẏ(t), t) + νV (1, x(t), y(t), z(t))} dt

s.t. (1), (2), (3), b(t) = βf(a(t)), a(t) ∈ A, x(0) given.

The last term in the integral reflects the probability weighted value, V , of
exiting the lockdown due to the discovery of a vaccine.

We are interested in analytical characterizations of optimal paths for a(t)
and the implied paths for x(t), y(t), and z(t). The system (1)–(3) or (4)–(6)
is not suitable for such characterizations. When we leave a(t) unrestricted
(subject to a(t) ∈ A) and form the Hamiltonian that reflects (1)–(3) and the
policy objective then the Hamiltonian does not yield closed-form solutions
even if we assume tractable functional forms for f , g, and h.3 Similarly,
restricting a(t) to belong to a class of functions that is parameterized by a
few parameters and maximizing the intertemporal objective subject to the
constraints (4)–(6) very quickly becomes analytically intractable as well.

3See Alvarez et al. (2020) for a numerical approach to solving a related problem.
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Against this background, we simplify the epidemiological framework in
order to express health dynamics in terms of a single rather than two state
variables.4 In the next section, we lay out these simplifications and solve the
policy problem.

3 Analysis

We analyze two specialized models which are nested by the general model
introduced above. We assume, realistically for most countries, that available
tests for infection and immunity are scarce, limiting the government’s options
to indiscriminate lockdowns of varying intensity and duration.

3.1 Model 1

To obtain the first model we simplify along two dimensions. First, we neglect
deaths and let cd = 0.5 Importantly, this does not mean that we disregard
the burden that infections impose on the health care system, to the contrary.
This burden depends on the outflow from susceptibles, not on the number of
deceased.

Second, we blur the distinction between infected and recovered. While
we maintain the feature of the SIR model that infection rates reflect the
interaction between susceptible and infected persons we assume that infected
persons are as productive as healthy ones. Formally, we let cr = 0 such that
infection is an absorbing state and z(t) = 0, and we assume that production
does not depend on the population shares x(t) and y(t). Stated differently, we
view x(t) as the population share of the “not yet infected” and y(t) = 1−x(t)
as the share of the “infected but still productive.” Since members of the two
groups are equally productive the function g does not depend on population
shares and V satisfies

V (1, x(t), y(t), z(t)) =

∫

∞

j=0

e−ρjg(1, 1, 0, 0) dj = g(1, 1, 0, 0)/ρ = ρ−1.

Regarding functional forms, we let f(a(t)) = a(t), output(t) = a(t), and

4The SIR model features two state variables, x(t) and y(t). The third variable, z(t), is
implied by the former two.

5Recall from figure 1 that the population share of deceased is small even in the absence
of any policy intervention.
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h(ẏ(t), t) = h1e
−λtẏ(t).6 That is, we let activity have a proportional effect

on the infection rate and on output and we assume that stress in the health
care system is proportional to ẏ(t) and a factor h1e

−λt. The parameter λ
represents the speed of learning or efficiency enhancing measures in the health
care sector. A strictly positive λ generates a motive to delay infections until
society is better equipped to confront the stress imposed on the health care
sector.7 Finally, we let A = [ā, 1] with ā > 0. Accordingly, the government’s
program reads

max
(a(t))∞

t=0

∫

∞

0

e−(ρ+ν)t
{

a(t)− h1e
−λtẏ(t) + ν/ρ

}

dt

s.t. ẏ(t) = a(t)βy(t)(1− y(t)), a(t) ∈ [ā, 1], y(0) given.

When we abstract from policy model 1 is identical to the SIR model
except that c = 0; that is, the time paths of x(t) and y(t) follow logistic
curves. Figure 2 illustrates the dynamics when a(t) = 1 and when we reduce
β by a factor of 0.8 relative to the value underlying figure 1 in order to better
match the dynamics of x(t) in the SIR model.

Note that the time paths of the shares of “infected” and “not yet infected”
are very similar in the two models.

Optimal Policy To characterize the optimal policy we form the current
value Hamiltonian

Hc(t) = a(t)− h1e
−λta(t)βy(t)(1− y(t)) +

ν

ρ
+ µ(t)a(t)βy(t)(1− y(t)),

where µ(t) denotes the co-state variable associated with the state variable
y(t). The derivative of Hc(t) with respect to the control variable a(t) yields

dHc(t)

da(t)
= 1− βy(t)(1− y(t))(h1e

−λt − µ(t)). (7)

Since this derivative does not depend on a(t) the control variable typically is
in a corner: either a(t) = ā or a(t) = 1.

6Unlike Alvarez et al. (2020) we assume that the effect of activity on the infection
rate is linear rather than quadratic. Recall from equation (1) that the infection rate ẋ(t)
depends on x(t) as well as the number of infected relative to the number of infected or
susceptible. The latter ratio does not change with a lockdown.

7In model 2, we explicitly model the motivation to flatten the curve in order to smooth
convex stress in the health care system over time.
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x(t), y'(t), y(t)

Figure 2: Dynamics in model 1 absent policy intervention: x(t) (solid), ẏ(t)
(scaled, dashed), and y(t) = (1− x(t)) (dotted).

The law of motion for the co-state variable is given by

µ̇(t) = −
dHc(t)

dy(t)
+(ρ+ν)µ(t) = a(t)β(1−2y(t))(h1e

−λt−µ(t))+(ρ+ν)µ(t).

Finally, the time derivative of the effect of the control variable on the Hamil-
tonian equals

˙(

dHc(t)

da(t)

)

= −β(1− 2y(t))(h1e
−λt − µ(t))a(t)βy(t)(1− y(t))

+ βy(t)(1− y(t))
[

a(t)β(1− 2y(t))(h1e
−λt − µ(t)) + (ρ+ ν)µ(t) + λe−λt

]

,

= βy(t)(1− y(t))
[

(ρ+ ν)µ(t) + λe−λt
]

. (8)

Note that µ(t) is the shadow value of the population share of the infected,
y(t). An increase in this share has no direct effect on output but reduces the
future burden on the health care system since ẏ(t) is strictly positive until
everybody is infected.8 Accordingly, µ(t) > 0. Combining this result with
equation (8) implies that the effect of a(t) on the Hamiltonian is monotoni-
cally increasing over time.

8Recall that ā > 0.
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We conclude that there are two cases to distinguish: Either dHc(0)/(da(0)) >
0 and the optimal policy does not involve a lockdown. For given y(0) this
condition is satisfied when h1, which parameterizes the burden that infections
impose on the health care system, is low. Or, if dHc(0)/(da(0)) < 0 (which
is the case for sufficiently high h1) the optimal policy immediately imposes
a lockdown. Such a lockdown cannot be permanent however and in fact, it
ends before all persons have been infected. For as long as µ(t) is bounded
the effect of the control on the Hamiltonian sooner or later becomes positive
since limt→∞ y(t) = 1 and therefore limt→∞ dHc(t)/da(t) = 1 > 0.9

3.2 Model 2

To obtain the second model we simplify along different dimensions. First, we
neglect recovery (cr = 0) and assume a strictly positive death rate (cd > 0)
such that everyone who transits from susceptible to infected eventually dies.
Second, we blur the distinction between susceptible and infected assuming
that the two groups are equally productive and that only their total share,
x(t) + y(t) = 1 − z(t), is relevant for the economy’s dynamics. That is, we
assume that x(t) and y(t) can be characterized by a single state variable.

Given the laws of motions (1) and (2) this requires that the relative share
x(t)/(x(t) + y(t)) remains constant over time. Since y(0)/x(0) = κ this
implies y(t)/(x(t) + y(t)) = κ(1 + κ)−1 and consistency with the laws of
motion then entails cd = β, which we assume to hold.10 Absent policy, the
system (1)–(3) therefore simplifies to

( ˙1− z(t)) = −β̃(1− z(t)) (= −βy(t)),

ż(t) = β̃(1− z(t)) (= βy(t)),

where β̃ ≡ βκ/(1+κ) denotes the fatality rate. Constancy of the fatality rate
is an unreasonable feature over longer periods, due to the eventual slowdown
of infections; we therefore view model 2 as a useful approximation only for
the short run.

Since susceptible and infected persons are equally productive and the

9This requires that ā > 0 as we assumed. If a(t) fell to zero the economy would shut
down and infections would no longer spread.

10When we introduce the policy choice a(t) we disregard the fact that this would in
principle also affect the condition cd = β and thereby modify the laws of motion.
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deceased do not contribute to production we have

V (1, x(t), y(t), z(t)) =

∫

∞

j=0

e−ρjg(1, 1− z(t), 0, z(t)) dj = (1− z(t))ρ−1,

where we assume that productivity returns to normal levels once the vaccine
is discovered. Regarding the (other) functional forms, we let f(a(t)) = a(t),
output(t) = a(t)(1− z(t)), and

h(ẏ(t)) =
h2

2
(ẏ(t))2

(

1 + κ

κ

)2

=
h2

2

(

˙(1− z(t))
κ

1 + κ

)2(
1 + κ

κ

)2

=
h2

2
(ż(t))2 .

That is, we let activity have a proportional effect on the infection rate and
on per-capita output and we assume that the stress in the health care sys-
tem is quadratic, with coefficient h2/2.

11 Finally, we let A = [ā, 1]. The
government’s program thus reads

max
(a(t))∞

t=0

∫

∞

0

e−(ρ+ν)t

{

a(t)(1− z(t))−
h2

2
(ż(t))2 +

ν

ρ
(1− z(t))

}

dt

s.t. ż(t) = a(t)β̃(1− z(t)), a(t) ∈ [ā, 1], z(0) given.

Optimal Policy The current value Hamiltonian now reads

Hc(t) = a(t)(1−z(t))−
h2

2
a(t)2β̃2(1−z(t))2+

ν

ρ
(1−z(t))+µ(t)a(t)β̃(1−z(t))

and its derivative with respect to the control variable a(t) is given by

dHc(t)

da(t)
= (1− z(t))(1 + β̃µ(t))− h2a(t)β̃

2(1− z(t))2.

We conjecture that a(t) is interior and thus satisfies

a(t) =
1 + β̃µ(t)

h2β̃2(1− z(t))
. (9)

The product a(t)(1 − z(t)) then does not directly depend on z(t) and the
same holds true for all terms in the Hamiltonian except the third one.

11This implies that lockdown is motivated by the aim to flatten the curve.
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The law of motion for the co-state variable is given by

˙µ(t) = −
dHc(t)

dz(t)
+(ρ+ν)µ(t) = a(t)(1+β̃µ(t))−h2a(t)

2β̃2(1−z(t))+
ν

ρ
+(ρ+ν)µ(t).

With an interior choice of a(t) the first two terms in this law of motion cancel.
The resulting differential equation integrates to

µ(t) =

(

µ(0) +
ν

ρ(ρ+ ν)

)

e(ρ+ν)t −
ν

ρ(ρ+ ν)
. (10)

Recall that ż(t) = a(t)β̃(1 − z(t)) = (1 + β̃µ(t))/(h2β̃) where we use equa-
tion (9). From condition (10) we therefore have

z(t) = z(0)+

(

1

h2β̃
−

ν

h2ρ(ρ+ ν)

)

t+

(

µ(0) +
ν

ρ(ρ+ ν)

)

1

h2(ρ+ ν)

(

e(ρ+ν)t − 1
)

.

(11)
To find µ(0) we compute the value of the objective function under the

optimal policy, W say, and differentiate it with respect to z(0). Under our
conjecture that the a(t) path is interior, all terms in the objective that are
proportional to a(t)(1−z(t)) do not directly depend on z(0), so we can neglect
them. Moreover, from condition (11) the integral over e−(ρ+ν)tν(1 − z(t))/ρ
only depends on z(0) through the term

∫

∞

0

e−(ρ+ν)t ν

ρ
(1− z(0)) dt = (1− z(0))

ν

ρ

1

ρ+ ν
.

We conclude that

µ(0) =
dW

dz(0)
= −

ν

ρ

1

ρ+ ν

and thus, from condition (10), µ(t) = µ(0).
This implies that the optimal path of a(t) satisfies

a(t) =
1− β̃ν

ρ(ρ+ν)

h2β̃2(1− z(t))

provided that this solution lies in [ā, 1]. That is, during the short term (when
the number of dead increases from z(t) ≈ 0 to a small population share) the
optimal size of the lockdown approximately equals

(

1−
β̃ν

ρ(ρ+ ν)

)

/(h2β̃
2).
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Higher values for β̃ or h2, that is, a higher fatality rate or higher costs in
the health care sector thus increase the optimal severity of the lockdown. A
more likely discovery of a vaccine (higher ν) increases the stringency of the
optimal containment measures because it renders µ(0) = µ(t) more negative;
this lowers ż(t) and shortens the expected duration of the lockdown.

The implied solution for z(t) is given by

z(t) = z(0) +
1

h2

ρ(ρ+ ν)− νβ̃

β̃ρ(ρ+ ν)
t,

which is a valid solution only if ρ(ρ+ ν) > νβ̃. Under this restriction a(t) is
indeed interior.12

Recall that in the absence of policy z(t) = 1 − (1 − z(0))e−β̃t and thus

ż(t) ≈ β̃e−β̃t. Comparing this expression with the time derivate of the pre-
ceding equality we conclude that the optimal policy reduces the number of
new deaths at time t by

β̃e−β̃t −
1

h2

ρ(ρ+ ν)− νβ̃

β̃ρ(ρ+ ν)
.

3.3 Taking Stock

Model 1 takes the exogenous lower bound ā as given and predicts the optimal
duration of a lockdown. When the burden that infections impose on the
health care system is sufficiently high then the optimal policy immediately
imposes a lockdown and abandons it before everybody is infected. If the
burden is low, in contrast, then the optimal policy never imposes a lockdown.

Model 2 predicts an interior path for the control variable when a para-
metric condition is satisfied. When the fatality rate or the cost of stress in
the health care sector are higher, or discovery of a vaccine is more likely then
the optimal lockdown is tighter. Over time the lockdown is slowly relaxed as
the number of deaths decreases.

We view the predictions of the two models as complementary. In the
next section we calibrate the two frameworks and generate quantitative pre-
dictions.

12Plugging the expression for z(t) into the expression for the optimal value of a(t)
derived above yields the duration until a(t) reaches the activity level 1—the duration of
the lockdown. Since we view the model is a model of the short run we do not emphasize
this implied duration.
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4 Calibration and Quantitative Results

We calibrate the model such that one period in the model corresponds to
one day. Following Alvarez et al. (2020) we assume an annual discount rate
of five percent, which translates into a daily rate of ρ = − ln(0.95)/365.13

Also following Alvarez et al. (2020) we let ν = 0.0018; this corresponds to a
probability of roughly 28 percent that a vaccine is discovered during half a
year,14 or to an expected time until discovery of about one and a half years.

For model 1, we assume that the fundamental infection rate, β, equals
(0.2)(0.8). Alvarez et al. (2020) assume that this value equals 0.2; we reduce
it to correct for the simplified law of motion (see the discussion relating
figures 1 and 2). Moreover, we assume that λ = − ln(0.5)/182 such that the
cost of stress in the health care sector (conditional on ẏ(t)) falls by one half
after half a year.

To calibrate the parameter h1 we rely on estimates according to which
an unchecked Covid-19 infection wave would have caused costs in the U.S. of
13 trillion dollars, corresponding to roughly 61 percent of annual U.S. GDP
(Scherbina, 2020).15 Consistent with Alvarez et al. (2020) and Scherbina
(2020) we assume that this damage would have occurred within half a year.
In light of the model this implies

h1

∫ 182

0

e−(ρ+ν)te−λtẏ(t)dt = 0.61 · 365,

where the right-hand side accounts for the fact that daily output equals one
in normal times. Letting y(0) = 0.01 and evaluating the integral numerically
we find that h1 ≈ 265.

For model 2, we calibrate the fatality rate, β̃, based on estimates accord-
ing to which an unchecked Covid-19 infection wave would have caused 1.9
million deaths in the U.S., corresponding to roughly 0.58 percent of the U.S.
population (Scherbina, 2020).16 Consistent with Alvarez et al. (2020) and
Scherbina (2020) we assume that most of this death toll would have occurred
within half a year. This yields an estimate of β̃ = − ln(1− 0.0058)/182. To
calibrate the parameter h2 we again use the cost estimate of 61 percent of
annual U.S. GDP (Scherbina, 2020). From this cost, we subtract the present

130.95 = e−ρ365.
141− 0.28 ≈ e−ν182.
1513/21.4 ≈ 0.6075 (BEA data).
161.9/330 ≈ 0.0058 (Census data).
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value of the permanent output losses due to lost lives after the end of the
transition. The remainder of the cost estimate is what we attribute to the
cost due to health care stress. Formally, we solve

∫ 182

0

e−(ρ+ν)th2

2
β̃2(1− z(t))2dt = 0.61 · 365− e−ρ182z(182)

∫

∞

0

e−ρtdt

or
∫ 182

0

e−(ρ+ν)th2

2
β̃2(1−z(0))2

(

e−β̃t
)2

dt = 0.61·365−
e−ρ182

ρ

(

1− (1− z(0))e−β̃182
)

.

Letting z(0) ≈ 0 and solving for h2 yields h2 ≈ 2.34×109. With these values
the parametric condition discussed in subsection 3.2 is satisfied.

Quantitative Predictions We use the formula from model 2 to compute
the optimal activity level during lockdown, a⋆(0) say. We find that the
optimal lockdown is severe: activity is reduced to roughly 33 percent of
normal. Not surprisingly this depends on the health care cost parameter,
h2. As figure 3 illustrates a⋆(0) increases substantially (the lockdown is less
extreme) when the cost is lower (and we keep the other parameter values
unchanged).

0.0 0.5 1.0 1.5 2.0
h (multiples of baseline)0.0

0.2

0.4

0.6

0.8

1.0

a(0)

Figure 3: Predicted optimal activity level, a⋆(0), for different costs due to
stress in the health care system.

Next, we set ā in model 1 equal to a⋆(0) and numerically solve for the
optimal duration of the lockdown, T ⋆ say. We find that this duration equals
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nearly 52 days. After the lockdown, roughly 13 percent of the population are
infected. Figure 4 illustrates how the objective of the government varies with
the duration of the lockdown. The cost of getting T wrong is asymmetric:
Setting T a bit smaller than T ⋆ is less costly than setting it a bit higher. If
the lockdown is kept in place over a very long period (longer than roughly
90 days) then this policy generates a lower value than no lockdown at all.

5� 100
T

6���

6��5

6880

6��5

6���

6��5

v����

Figure 4: Value of the program for different durations of the lockdown, T .
The dashed line indicates the value when there is no lockdown, T = 0.

Figure 5 illustrates how the optimal policy changes the dynamics of in-
fections. The solid line in the figure depicts the optimal path: it is relatively
up to the optimal exit time and increases quickly thereafter. The dashed line
depicts the path of y(t) in the absence of policy.

The first line in table 1 summarizes these baseline results. The other lines
in the table report how the predictions change when we alter the calibration.
When we assume a lower discount rate then a⋆(0) falls and T ⋆ rises slightly:
a more patient planner reduces activity by more, for longer. The same holds
true when we assume a higher discovery rate for a vaccine. When we double
ν to 0.0036 then a⋆(0) falls to roughly 28 percent and T ⋆ rises to roughly 83
days.

Changes in β do not affect the optimal severity of a lockdown. However,
they do affect T ⋆. A reduction in β by 20 percent increases T ⋆ to nearly 61
days, and an increase in β by 20 percent lowers it to 45 days. Lowering β̃ by
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�	 100
t0.0

0.2

0.4

0.6

0.8

share of infected

Figure 5: Share of infected under the optimal policy (solid) and in the absence
of policy intervention (dashed).

20 percent increases a⋆(0) to 33.32 and reduces T ⋆ to 51.32, while increasing
it by 20 percent implies a⋆(0) ≈ 32.62 and T ⋆ ≈ 51.98. The model predictions
thus are fairly robust to changes in the fatality rate.

Finally, when we increase λ by 10 percent such that after half a year,
efficiency in the health care sector has increased by roughly 53 percent (for
instance because preparations for the wave of infections have been particu-
larly bad), then the optimal duration rises to more than 56 days. When we
strongly reduce λ, however, the optimal policy eventually involves no lock-
down at all. That is, when the health care system is adequately prepared
to deal with a pandemic such that there is no role for learning or efficiency
improvements over time then it is optimal not to impose a lockdown.

5 Conclusion

We embed a lockdown choice in a simplified epidemiological model and derive
formulas for the optimal lockdown intensity and duration. The optimal policy
reflects the rate of time preference, epidemiological factors, the hazard rate of
vaccine discovery, learning effects in the health care sector, and the severity
of output losses due to a lockdown.

In our baseline specification a Covid-19 shock as currently experienced
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Table 1: Optimal Lockdown

Calibration a⋆(0) (in percent) T ⋆ (in days)

Baseline 32.98 51.64

Annual discount rate 3% 31.50 51.83
ν twice as high 28.12 82.83
β 20% lower 32.98 60.87
β 20% higher 32.98 44.70

β̃ 20% lower 33.32 51.32

β̃ 20% higher 32.62 51.98
λ 10% higher 32.98 56.31

Table 2: Quantitative predictions under different calibration assumptions.
a⋆ denotes the optimal activity level relative to normal and T ⋆ the optimal
duration of the lockdown.

by the US optimally triggers a reduction in economic activity by two thirds,
for about 50 days. On an annual basis, this corresponds to a drop in GDP
by 9.5 percent.

We hope that future research can build on our simplified frameworks.
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A Solving the SIR Model

The system (1)–(3) can be solved as follows (Bohner et al., 2019): Let ξ(t) ≡
x(t)/y(t) for y(t) 6= 0. We have

ξ̇(t) =
ẋ(t)y(t)− x(t)ẏ(t)

y2(t)
= (c− b(t))ξ(t),

such that

ξ(t) = ξ(0)e
∫
t

0
(c−b(s))ds ⇔ y(t) = x(t)κe

∫
t

0
(b(s)−c)ds

where κ ≡ y(0)/x(0). Substituting into equation (1) yields

ẋ(t) = −b(t)x(t)
κe

∫
t

0 (b(s)−c)ds

1 + κe
∫
t

0
(b(s)−c)ds

,

which has the solution

x(t) = x(0)e

∫
t

0
−κb(u)

κ+e

∫
u
0 (c−b(s))ds

du
. (4)

Accordingly, we can solve equation (2) for

y(t) = y(0)e

∫
t

0
b(u)

1+κe

∫
u
0 (b(s)−c)ds

−c du
(5)

and equation (3) for

z(t) = 1− x(t)
(

1 + κe
∫
t

0
(b(s)−c)ds

)

s.t. (4), (6)

where we use the fact that the population size equals unity.
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